Skip to main content
Log in

An Empirical Study on the Use of Quantum Computing for Financial Portfolio Optimization

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Quantum Computing (QC) is regarded with a mix of amazement, excitement, and skepticism. While quantum computers have been shown to outperform classical ones in particular computational tasks, their effective applicability to general-purpose problems remains under-studied. We shed light on the practical use of QC to tackle a combinatorial optimization problem in Finance, the Portfolio Optimization Problem (POP). We present an in-depth empirical study on the influence that configurable parameters of both a state-of-the-art adiabatic quantum computer and POP itself can have on the overall quality of the solutions we obtain. Our results show that some of these parameters, such as chain strength and a number of reads, have a significant statistical effect, while others, such as anneal schedule and embedding, do not. Our results also show that the quality of the solutions returned by a quantum computer, given a quadratic unconstrained binary optimization formulation of POP from the literature, is still far from the quality of the solutions produced by a classical computer using an exact algorithm. We believe the conclusions drawn from our study are valuable contributions to the utilization of adiabatic quantum computers in practice, not only in the context of POP but also for other application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Notes

  1. https://www.dwavesys.com/.

References

  1. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean JR, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505–10. https://doi.org/10.1038/s41586-019-1666-5 (Accessed 2021-01-16).

    Article  Google Scholar 

  2. Zhong H-S, Wang H, Deng Y-H, Chen M-C, Peng L-C, Luo Y-H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X-Y, Zhang W-J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N-L, Lu C-Y, Pan J-W. Quantum computational advantage using photons. Science. 2020;370(6523):1460–3. https://doi.org/10.1126/science.abe8770.

    Article  Google Scholar 

  3. Systems D-W. The road to advantage 2020. https://medium.com/d-wave/the-road-to-advantage-33690b762aca. (Accessed 2022-05-13)

  4. Systems D-W. D-Wave’s next-generation roadmap: bringing clarity to practical quantum computing. 2021. https://dwave.medium.com/d-waves-next-generation-roadmap-bringing-clarity-to-practical-quantum-computing-192b3275c73d (Accessed 2022-05-13).

  5. Honeywell International Inc. Honeywell sets another record for quantum computing performance. Retrieved October 6, 2021, from https://www.honeywell.com/us/en/news/2021/07/honeywell-sets-another-record-for-quantum-computing-performance 2021.

  6. Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM. Validating quantum computers using randomized model circuits. Phys Rev A. 2019. https://doi.org/10.1103/physreva.100.032328.

    Article  Google Scholar 

  7. Ushijima-Mwesigwa H, Shaydulin R, Negre CFA, Mniszewski SM, Alexeev Y, Safro I. Multilevel combinatorial optimization across quantum architectures. ACM Trans Quantum Comput. 2021. https://doi.org/10.1145/3425607.

    Article  MathSciNet  Google Scholar 

  8. Tabi Z, El-Safty KH, Kallus Z, Hága P, Kozsik T, Glos A, Zimborás Z. Quantum optimization for the graph coloring problem with space-efficient embedding. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). 2020, pp. 56–62 2020. https://doi.org/10.1109/QCE49297.2020.00018

  9. Krauss T, McCollum J. Solving the network shortest path problem on a quantum Annealer. IEEE Trans Quantum Eng. 2020;1:1–12. https://doi.org/10.1109/TQE.2020.3021921.

    Article  Google Scholar 

  10. Lucas A. Ising formulations of many np problems. Front Phys. 2014;2:5. https://doi.org/10.3389/fphy.2014.00005.

    Article  Google Scholar 

  11. Nielsen MA, Chuang IL. Quantum computation and quantum information: 10th anniversary edition. Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511976667

  12. Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput. 1997;26(5):1484–509. https://doi.org/10.1137/s0097539795293172.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mavroeidis V, Vishi KDM, Jøsang A. The impact of quantum computing on present cryptography. Int J Adv Comput Sci Appl. 2018. https://doi.org/10.14569/ijacsa.2018.090354.

    Article  Google Scholar 

  14. Arapinis M, Lamprou N, Kashefi E, Pappa A. Definitions and security of quantum electronic voting. ACM Trans Quantum Comput. 2021. https://doi.org/10.1145/3450144.

    Article  MathSciNet  Google Scholar 

  15. Doosti M, Kumar N, Delavar M, Kashefi E. Client-server identification protocols with quantum puf. ACM Trans Quantum Comput. 2021. https://doi.org/10.1145/3484197.

    Article  MathSciNet  Google Scholar 

  16. D-Wave Systems Inc. D-Wave System Documentation documentation. Retrieved September 9, 2021, from https://docs.dwavesys.com/docs/latest/c_gs_1.html 2021

  17. Boothby K, Bunyk P, Raymond J, Roy A. Next-generation topology of D-Wave quantum processors; 2020. https://doi.org/10.48550/arXiv.2003.00133.

  18. Li M, Yao X. Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Comput Surv (CSUR). 2019;52(2):1–38.

    Article  Google Scholar 

  19. Kato T. On the adiabatic theorem of quantum mechanics. J Phys Soc Jpn. 1950;5(6):435–9. https://doi.org/10.1143/JPSJ.5.435.

    Article  Google Scholar 

  20. LaPierre R. Adiabatic quantum computing. Cham: Springer; 2021. p. 323–6. https://doi.org/10.1007/978-3-030-69318-3_23.

    Book  Google Scholar 

  21. Pelofske E, Hahn G, Djidjev H. Decomposition algorithms for solving NP-hard problems on a quantum annealer. J Signal Process Syst. 2020;93(4):405–20. https://doi.org/10.1007/s11265-020-01550-1.

    Article  Google Scholar 

  22. D-Wave Systems Inc. Programming the D-Wave QPU: setting the chain strength. Retrieved September 9, 2021, from https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf. 2021.

  23. Boyd SP, Vandenberghe L. Convex optimization. Cambridge: Cambridge University Press; 2004.

    Book  Google Scholar 

  24. Lee J. A first course in combinatorial optimization. Cambridge texts in applied mathematics. Cambridge: Cambridge University Press; 2004. https://doi.org/10.1017/CBO9780511616655.

    Book  Google Scholar 

  25. Coffey MW. Adiabatic quantum computing solution of the knapsack problem 2017. https://doi.org/10.48550/arXiv.1701.05584.

  26. Phillipson F, Bhatia HS. Portfolio optimisation using the D-wave quantum annealer 2020. https://doi.org/10.48550/arXiv.2012.01121.

  27. Law J. A dictionary of finance and banking. Oxford: Oxford University Press; 2014.

    Google Scholar 

  28. Markowitz H. Portfolio selection*. J Financ. 1952;7(1):77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x.

    Article  Google Scholar 

  29. Egger DJ, Gambella C, Marecek J, McFaddin S, Mevissen M, Raymond R, Simonetto A, Woerner S, Yndurain E. Quantum computing for finance: state-of-the-art and future prospects. IEEE Trans Quantum Eng. 2020;1:1–24. https://doi.org/10.1109/tqe.2020.3030314.

    Article  Google Scholar 

  30. Barkoutsos PK, Nannicini G, Robert A, Tavernelli I, Woerner S. Improving variational quantum optimization using cvar. Quantum. 2020. https://doi.org/10.22331/q-2020-04-20-256.

    Article  Google Scholar 

  31. Voorneveld M. Characterization of pareto dominance. Oper Res Lett. 2003;31(1):7–11. https://doi.org/10.1016/S0167-6377(02)00189-X.

    Article  MathSciNet  MATH  Google Scholar 

  32. Ehrgott M. Multiobjective optimization. AI Mag. 2008;29:47–57. https://doi.org/10.1007/978-0-387-76635-5_6.

    Article  Google Scholar 

  33. D-Wave Systems Inc. Quantum programming 101: solving a problem from end to end | D-Wave webinar. https://www.youtube.com/watch?v=Q4FE4jou5CA (Accessed 2021-06-28).

  34. Kalayci CB, Ertenlice O, Akbay MA. A comprehensive review of deterministic models and applications for mean-variance portfolio optimization. Expert Syst Appl. 2019;125:345–68. https://doi.org/10.1016/j.eswa.2019.02.011.

    Article  Google Scholar 

  35. Armananzas R, Lozano JA. A multiobjective approach to the portfolio optimization problem. In: 2005 IEEE Congress on Evolutionary Computation, 2005;2, pp. 1388–13952 . https://doi.org/10.1109/CEC.2005.1554852

  36. Zhu H, Wang Y, Wang K, Chen Y. Particle swarm optimization (pso) for the constrained portfolio optimization problem. Expert Syst Appl. 2011;38(8):10161–9. https://doi.org/10.1016/j.eswa.2011.02.075.

    Article  Google Scholar 

  37. Mendonça GHM, Ferreira FGDC, Cardoso RTN, Martins FVC. Multi-attribute decision making applied to financial portfolio optimization problem. Expert Syst Appl. 2020;158:113527. https://doi.org/10.1016/j.eswa.2020.113527.

    Article  Google Scholar 

  38. Mugel S, Kuchkovsky C, Sanchez E, Fernandez-Lorenzo S, Luis-Hita J, Lizaso E, Orus R. Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks 2020. https://doi.org/10.48550/arXiv.2007.00017

  39. Grant E, Humble TS, Stump B. Benchmarking quantum annealing controls with portfolio optimization. Phys Rev Appl. 2021;15:014012. https://doi.org/10.1103/PhysRevApplied.15.014012.

    Article  Google Scholar 

  40. Mcgill R, Tukey JW, Larsen WA. Variations of box plots. Am Stat. 1978;32(1):12–6. https://doi.org/10.1080/00031305.1978.10479236.

    Article  Google Scholar 

  41. Iman RL, Conover WJ. The use of the rank transform in regression. Technometrics. 1979;21(4):499–509. https://doi.org/10.1080/00401706.1979.10489820.

    Article  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Programme New Talents in Quantum Technologies of the Gulbenkian Foundation (Portugal). This work was partially funded by national funds through the Fundação para a Ciência e a Tecnologia within the scope of the project CISUC – UID/CEC/00326/2020; by Instituto de Telecomunicações and Fundação para a Ciência e a Tecnologia under grant UIDB/50008/2020; and by the Artificial Intelligence and Computer Science Laboratory, University of Porto (LIACC), FCT/UID/CEC/0027/2020, funded by national funds through the FCT/MCTES (PIDDAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio Gomes.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, C., Falcao, G., Paquete, L. et al. An Empirical Study on the Use of Quantum Computing for Financial Portfolio Optimization. SN COMPUT. SCI. 3, 335 (2022). https://doi.org/10.1007/s42979-022-01215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01215-9

Keywords

Navigation