Skip to main content

Advertisement

Log in

A Study on Indirect Performance Parameters of Object Detection

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Object detection is one of the inevitable tasks in the technological world. When the world started to rely entirely on technological intervention for almost all the tasks, different sectors started to implant artificial intelligence for precise decision making. Object detection is one among the category, which showed its applications in various domains including health care, military and anomaly detection, etc. Since there are many review on object detection, we focus only on the methods which are less expressed but indirectly have a significant performance gain. Notwithstanding, we review predominant methods of object detection including the pre-deep learning era. From the review, we are able to conclude indirect performance parameters of object detector has a significant impact on their performance for different problem scenarios. Finally, we also highlight the best characteristic of object detection in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aghnia Farda N, Lai JY, Wang JC, Lee PY, Liu JW, Hsieh IH. Sanders classification of calcaneal fractures in CT images with deep learning and differential data augmentation techniques. Injury. 2021;52(3):616–24. https://doi.org/10.1016/j.injury.2020.09.010.

    Article  Google Scholar 

  2. Akcay S, Kundegorski ME, Willcocks CG, Breckon TP. Using deep convolutional neural network architectures for object classification and detection within x-ray baggage security imagery. IEEE Trans Inf Forensics Secur. 2018;13(9):2203–15. https://doi.org/10.1109/TIFS.2018.2812196.

    Article  Google Scholar 

  3. Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, Ariji E. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;00(00):1–7. https://doi.org/10.1016/j.oooo.2019.05.014.

    Article  Google Scholar 

  4. Arulprakash E, Aruldoss M. A study on fight against COVID-19 from Latest Technological Intervention. SN Comput Sci. 2020. https://doi.org/10.1007/s42979-020-00301-0.

    Article  Google Scholar 

  5. Bell S, Zitnick CL, Bala K, Girshick R. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. pp. 2874–2883.

  6. Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell. 2002;24(4):509–22.

    Article  Google Scholar 

  7. Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35:1798–828. https://doi.org/10.1109/TPAMI.2013.50.

    Article  Google Scholar 

  8. Bodla N, Singh B, Chellappa R, Davis LS. Soft-NMS--improving object detection with one line of code. In: Proceedings of the IEEE international conference on computer vision, pp. 5561–5569. 2017.

  9. Cai Z, Vasconcelos N. Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018. pp. 6154–6162.

  10. Chen G, Chen K, Zhang L, Zhang L, Knoll A. VCANet: vanishing-point-guided context-aware network for small road object detection. Autom Innov. 2021. https://doi.org/10.1007/s42154-021-00157x.

    Article  Google Scholar 

  11. Csurka G, Dance C, Fan L, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Workshop on statistical learning in computer vision, ECCV (Vol. 1, No. 1–22, pp. 1–2). 2004.

  12. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05) (Vol. 1, pp. 886–893). 2005.

  13. Dvornik N, Mairal J, Schmid C. Modeling visual context is key to augmenting object detection datasets. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018. pp. 364–380.

  14. Dwibedi D, Misra I, Hebert M. Cut, paste and learn: Surprisingly easy synthesis for instance detection. In: Proceedings of the IEEE international conference on computer vision, 2017. pp. 1301–1310.

  15. Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: 2008 IEEE conference on computer vision and pattern recognition. 2008. pp. 1–8. Ieee.

  16. Fischler MA, Elschlager RA. The representation and matching of pictorial structures. IEEE Trans Comput. 1973;100(1):67–92.

    Article  Google Scholar 

  17. Fu H, Fan X, Yan Z, Du X. Detection of schools in remote sensing images based on attention-guided dense network. ISPRS Int J Geo Inf. 2021;10(11):736.

    Article  Google Scholar 

  18. Galleguillos C, Belongie S. Context based object categorization: a critical survey. Comput Vis Image Underst. 2010;114(6):712–22.

    Article  Google Scholar 

  19. Ghodrati A, Diba A, Pedersoli M, Tuytelaars T, Van Gool L. Deepproposal: Hunting objects by cascading deep convolutional layers. In: Proceedings of the IEEE international conference on computer vision, 2015. pp. 2578–258.

  20. Gidaris S, Komodakis N. Object detection via a multi-region and semantic segmentation-aware cnn model. In: Proceedings of the IEEE international conference on computer vision. 2015. pp. 1134–1142.

  21. Gidaris S, Komodakis N. Attend refine repeat: active box proposal generation via in-out localization. 2016. arXiv preprint arXiv:1606.04446.

  22. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. pp. 580–587.

  23. Girshick R. Fast R-CNN. In:Proceedings of the IEEE International Conference on Computer Vision, 2015. pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169.

  24. Gupta A, Vedaldi A, Zisserman A. Synthetic data for text localisation in natural images. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 2315–2324.

  25. Han X. Modified cascade RCNN based on contextual information for vehicle detection. Sens Imaging. 2021;22(1):1–19. https://doi.org/10.1007/s11220-021-00342-6.

    Article  Google Scholar 

  26. He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell. 2015;37(9):1904–16.

    Article  Google Scholar 

  27. He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 8691 LNCS(PART 3). 2014.pp. 346–361. https://doi.org/10.1007/978-3-319-10578-9_23.

  28. Hosang J, Benenson R, Schiele B. Learning non-maximum suppression. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 4507–4515.

  29. Hu H, Gu J, Zhang Z, Dai J, Wei Y. Relation networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. pp. 3588–3597.

  30. Kong T, Sun F, Yao A, Liu H, Lu M, Chen Y. RON: Reverse connection with objectness prior networks for object detection. In: Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua. 2017. pp. 5244–5252. https://doi.org/10.1109/CVPR.2017.557.

  31. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to digit recognition. Neural Comput. 1989;1:541–51.

    Article  Google Scholar 

  32. Lenc K, Vedaldi A. Understanding image representations by measuring their equivariance and equivalence. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. pp. 991999.

  33. Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M. Deep learning for generic object detection: a survey. Int J Comput Vis. 2020;128(2):261–318.

    Article  Google Scholar 

  34. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC. SSD: Single shot multibox detector. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 9905 LNCS. 2016. Pp. 21–37. https://doi.org/10.1007/978-3-319-46448-0_2.

  35. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC. SSD: Single shot multibox detector. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 9905 LNCS. 2016.pp. 21–37. https://doi.org/10.1007/978-3-319-46448-0_2.

  36. Lowe D. Object recognition from local scale-invariant features. In: Proceedings of the IEEE international conference on computer vision, 2. 2001.

  37. Murase H, Nayar SK. Visual learning and recognition of 3-D objects from appearance. Int J Comput Vision. 1995;14(1):5–24.

    Article  Google Scholar 

  38. Oktay AB, Gurses A. Automatic detection, localization and segmentation of nano-particles with deep learning in microscopy images. Micron. 2019;120:113–9. https://doi.org/10.1016/j.micron.2019.02.009.

    Article  Google Scholar 

  39. Venkatesan C, Karthigaikumar P, Paul A, Satheeskumaran S, Kumar R. ECG signal pre-processing and SVM classifier-based abnormality detection in remote healthcare applications. IEEE Access. 2018;6:9767–73.

    Article  Google Scholar 

  40. Peng C, Xiao T, Li Z, Jiang Y, Zhang X, Jia K, Sun J Megdet: A large mini-batch object detector. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. pp. 6181–6189.

  41. Peng X, Sun B, Ali K, Saenko K. Learning deep object detectors from 3d models. In: Proceedings of the IEEE international conference on computer vision. 2015. pp. 1278–1286.

  42. Perronnin F, Sánchez J, Mensink T. Improving the fisher kernel for large-scale image classification. In: European conference on computer vision. 2010. pp. 143–156. Springer, Berlin, Heidelberg.

  43. Ponce J, Hebert M, Schmid C, Zisserman A (eds). Toward category-level object recognition, Vol. 4170. Springer. 2007.

  44. Razzak I, Imran M, Xu G. Efficient Brain tumor segmentation with multiscale two-pathway-group conventional neural networks. IEEE J Biomed Health Inf 1:1. https://doi.org/10.1109/JBHI.2018.2874033.

  45. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, 2016;779–788. https://doi.org/10.1109/CVPR.2016.91.

  46. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39(6):1137–49. https://doi.org/10.1109/TPAMI.2016.2577031.

    Article  Google Scholar 

  47. Rong D, Xie L, Ying Y. Computer vision detection of foreign objects in walnuts using deep learning. Comput Electron Agric. 2019;162(February):1001–10. https://doi.org/10.1016/j.compag.2019.05.019.

    Article  Google Scholar 

  48. Rolet P, Sebag M, Teytaud O. Integrated recognition, localization and detection using convolutional networks. In: Proceedings of the ECML conference. 2012. pp. 1255–1263.

  49. Singh B, Davis LS. An analysis of scale invariance in object detection snip. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. pp. 3578–3587.

  50. Singh B, Li H, Sharma A, Davis LS. R-fcn-3000 at 30fps: Decoupling detection and classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. pp. 1081–1090.

  51. Singh B, Najibi M, Davis LS. Sniper: Efficient multi-scale training. 2018. arXiv preprint arXiv:1805.09300.

  52. Singh B, Najibi M, Sharma A, Davis LS. Scale normalized image pyramids with autofocus for object detection. IEEE Trans Pattern Anal Mach Intell. 2021.

  53. Siris A, Jiao J, Tam GK, Xie X, Lau RW. Scene context-aware salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. pp. 4156–4166.

  54. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A. Going deeper with convolutions. IEEE Conf Comput Vis Pattern Recognit. 2015. https://doi.org/10.1109/CVPR.2015.7298594.

    Article  Google Scholar 

  55. Turan B, Masuda T, Noor AM, Horio K, Saito TI, Miyata Y, Arai F. High accuracy detection for T-cells and B-cells using deep convolutional neural networks. ROBOMECH J 2018;5(1). https://doi.org/10.1186/s40648-018-0128-4

  56. Tychsen-Smith L, Petersson L Denet: Scalable real-time object detection with directed sparse sampling. In: Proceedings of the IEEE international conference on computer vision. 2017. pp. 428–436.

  57. Tygert M, Bruna J, Chintala S, LeCun Y, Piantino S, Szlam A. A mathematical motivation for complex-valued convolutional networks. Neural Comput. 2016;28(5):815–25. https://doi.org/10.1162/NECO_a_00824.

    Article  MathSciNet  MATH  Google Scholar 

  58. Vaillant R, Monrocq C, Le Cun Y. Original approach for the localisation of objects in images. IEE Proc Vis Image Signal Process. 1994;141(4):245–50.

    Article  Google Scholar 

  59. Viola P, Jones M. Managing work role performance: challenges for twenty-first century organizations and their employees. Rapid Object Detection Using a Boosted Cascade of Simple Features. 2001. https://doi.org/10.1109/CVPR.2001.990517.

    Article  Google Scholar 

  60. Wang R, Jiao L, Xie C, Chen P, Du J, Li R. S-RPN: sampling-balanced region proposal network for small crop pest detection. Comput Electron Agric. 2021;187: 106290.

    Article  Google Scholar 

  61. Wang X, Shrivastava A, Gupta A. A-fast-rcnn: Hard positive generation via adversary for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 2606–2615.

  62. Yang F, Choi W, Lin Y. Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. pp. 2129–2137.

  63. Yang J, Li S, Wang Z, Yang G. Real-time tiny part defect detection system in manufacturing using deep learning. IEEE Access. 2019;7:89278–91. https://doi.org/10.1109/access.2019.2925561.

    Article  Google Scholar 

  64. Zhao X, Zhang Y, Wang N. Bolt loosening angle detection technology using deep learning. Struct Control Health Monit. 2019;26(1):1–14. https://doi.org/10.1002/stc.2292.

    Article  Google Scholar 

  65. Zhu Y, Zhao C, Wang J, Zhao X, Wu Y, Lu H. Couplenet: Coupling global structure with local parts for object detection. In: Proceedings of the IEEE international conference on computer vision. 2017. pp. 4126–4134.

  66. Zitnick CL, Dollár P. Edge boxes: Locating object proposals from edges. In: European conference on computer vision, 2014. pp. 391–405. Cham: Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Arulprakash.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Advances in Computational Approaches for Artificial Intelligence, Image Processing, IoT and Cloud Applications” guest edited by Bhanu Prakash K N and M. Shivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulprakash, E., Martin, A. & Lakshmi, T.M. A Study on Indirect Performance Parameters of Object Detection. SN COMPUT. SCI. 3, 386 (2022). https://doi.org/10.1007/s42979-022-01277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01277-9

Keywords

Navigation