Skip to main content
Log in

Towards the Use of Hypermedia MAS and Microservices for Web Scale Agent-Based Simulation

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

This paper presents a vision for a new breed of Agent-Based Simulations that are based on the principles of the current generation web technologies. We propose a novel approach to implementing complex agent-based simulations built from loosely-coupled reusable components in a manner that ensures scalability. This vision is inspired by the emergence of the recently proposed hypermedia multi-agent systems concept, which combines hypermedia systems, semantic web and affordances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://webhook.net/.

  2. https://datatracker.ietf.org/doc/html/rfc2616.html.

References

  1. Du, J., Jing, H., Choo, K.-K.R., Sugumaran, V., Castro-Lacouture, D.: An ontology and multi-agent based decision support framework for prefabricated component supply chain. Information Systems Frontiers, 1–19 (2019)

  2. Golpayegani, F., et al.: Co-ride: Collaborative preference-based taxi-sharing and taxi-dispatch. In: 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 864–871 (2018). IEEE

  3. Teixeira B, Santos G, Pinto T, Vale Z, Corchado JM. Application ontology for multi-agent and web-services’ co-simulation in power and energy systems. IEEE Access. 2020;8:81129–41.

    Article  Google Scholar 

  4. Polhill JG, Ge J, Hare MP, Matthews KB, Gimona A, Salt D, Yeluripati J. Crossing the chasm: a ‘tube-map’for agent-based social simulation of policy scenarios in spatially-distributed systems. GeoInformatica. 2019;23(2):169–99.

    Article  Google Scholar 

  5. Kitova OV, Kolmakov IB, Dyakonova LP, Grishina OA, Danko TP, Sekerin VD. Hybrid intelligent system of forecasting of the socio-economic development of the country. Int J Appl Bus Econ Res. 2016;14(9):5755–66.

    Google Scholar 

  6. Eldabi, T., Brailsford, S., Djanatliev, A., Kunc, M., Mustafee, N., Osorio, A.F.: Hybrid simulation challenges and opportunities: a life-cycle approach. In: 2018 Winter Simulation Conference (WSC), pp. 1500–1514 (2018). IEEE

  7. Mustafee, N., Brailsford, S., Djanatliev, A., Eldabi, T., Kunc, M., Tolk, A.: Purpose and benefits of hybrid simulation: contributing to the convergence of its definition. In: 2017 Winter Simulation Conference (WSC), pp. 1631–1645 (2017). IEEE

  8. Brailsford SC, Eldabi T, Kunc M, Mustafee N, Osorio AF: Hybrid simulation modelling in operational research: A state-of-the-art review. European Journal of Operational Research 278(3) (2019)

  9. Turner B II, Esler KJ, Bridgewater P, Tewksbury J, Sitas N, Abrahams B, Chapin FS III, Chowdhury RR, Christie P, Diaz S, et al. Socio-environmental systems (ses) research: what have we learned and how can we use this information in future research programs. Current opinion in environmental sustainability. 2016;19:160–8.

    Article  Google Scholar 

  10. Fowler M. MicroServices: A definition of this new architectural term (2014). https://martinfowler.com/articles/microservices.html

  11. Ciortea A, Mayer S, Gandon F, Boissier O, Ricci A, Zimmermann A. A decade in hindsight: the missing bridge between multi-agent systems and the world wide web. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (2019)

  12. Abar S, Theodoropoulos GK, Lemarinier P, O’Hare GM. Agent based modelling and simulation tools: A review of the state-of-art software. Computer Science Review. 2017;24:13–33.

    Article  Google Scholar 

  13. Taylor S, Anagnostou A, Abubakar N, Kiss T, Deslauriers J, Terstyanszky G, Kacsuk P, Kovacs J, Kite S, Pattison G, et al. Innovations in simulation: Experiences with cloud-based simulation experimentation. In: Winter Simulation Conference 2020 (2020)

  14. Rashid ZN, Zebari SR, Sharif KH, Jacksi K. Distributed cloud computing and distributed parallel computing: A review. In: 2018 International Conference on Advanced Science and Engineering (ICOASE), pp. 167–172 (2018). IEEE

  15. Collier N, North M. Repast hpc: A platform for large-scale agent-based modeling. Large-Scale Computing. 2012;10:81–109.

    Article  Google Scholar 

  16. Wshhsh Axhausen K, Horni A, Nagel K. The Multi-agent Transport Simulation MATSim. NY: Ubiquity Press; 2016.

    Google Scholar 

  17. Taylor SJ. Distributed simulation: state-of-the-art and potential for operational research. Eur J Oper Res. 2019;273(1):1–19.

    Article  MATH  Google Scholar 

  18. Taylor SJE, Kiss T, Anagnostou A, Terstyanszky G, Kacsuk P, Costes J, Fantini N. The CloudSME simulation platform and its applications: A generic multi-cloud platform for developing and executing commercial cloud-based simulations. Futur Gener Comput Syst. 2018;88:524–39. https://doi.org/10.1016/j.future.2018.06.006.

    Article  Google Scholar 

  19. Al-Zoubi, K., Wainer, G.: Rise: A general simulation interoperability middleware container. Journal of Parallel and Distributed Computing 73(5) (2013)

  20. Cordasco G, Scarano V, Spagnuolo C. Distributed mason: A scalable distributed multi-agent simulation environment. Simul Model Pract Theory. 2018;89:15–34.

    Article  Google Scholar 

  21. Luke S, Cioffi-Revilla C, Panait L, Sullivan K. Mason: A new multi-agent simulation toolkit. In: Proceedings of the 2004 Swarmfest Workshop, vol. 8, pp. 316–327 (2004). Michigan, USA

  22. Hüning C, Adebahr M, Thiel-Clemen T, Dalski J, Lenfers U, Grundmann L. Modeling & simulation as a service with the massive multi-agent system mars. In: Proceedings of the Agent-Directed Simulation Symposium, pp. 1–8 (2016)

  23. Zimmermann, O.: Microservices tenets. Computer Science-Research and Development 32(3-4) (2017)

  24. Anagnostou, A., Taylor, S.J., Abubakar, N.T., Kiss, T., DesLauriers, J., Gesmier, G., Terstyanszky, G., Kacsuk, P., Kovacs, J.: Towards a deadline-based simulation experimentation framework using micro-services auto-scaling approach. In: 2019 Winter Simulation Conference (WSC), pp. 2749–2758 (2019)

  25. Pump, R., Koschel, A., Ahlers, V.: Applying microservices principles to simulation tools. In: Service Computation, 11th International Conference on Advanced Service Computing (2019)

  26. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.: Microservices: How to make your application scale. In: Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2018). doi 10.1007/978-3-319-74313-4_8

  27. Richards, M.: Microservices Vs. Service-oriented Architecture. O’Reilly Media, (2015)

  28. Thönes J. Microservices. IEEE Softw. 2015;32(1):116–116.

    Article  Google Scholar 

  29. Rao, A.S., Georgeff, M.P., et al.: Bdi agents: from theory to practice. In: Icmas, vol. 95 (1995)

  30. Adam C, Gaudou B. Bdi agents in social simulations: a survey. The Knowledge Engineering Review. 2016;31(3):207–38.

    Article  Google Scholar 

  31. Shoham Y. Agent-oriented programming. Artif Intell. 1993;60(1):51–92.

    Article  MathSciNet  Google Scholar 

  32. Kravari K, Bassiliades N. A survey of agent platforms. J Artif Soc Soc Simul. 2015;18(1):11.

    Article  Google Scholar 

  33. Bădică A, Bădică C, Ivanović M, Dănciulescu D. Multi-agent modelling and simulation of graph-based predator-prey dynamic systems: A bdi approach. Expert Syst. 2018;35(5):12263.

    Article  Google Scholar 

  34. Lawlor, F., Collier, R., Nallur, V.: Towards a programmable framework for agent game playing. arXiv preprint arXiv:1807.08545 (2018)

  35. Bădică, A., Bădică, C., Buligiu, I., Ciora, L.: Devs modeling and simulation using bdi agents: Preliminary considerations. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, pp. 1–8 (2018)

  36. Balabanov K, Cejrowski T, Logofătu D, Bădică C. Study on population dynamics for triple-linked food chain using a simulation-based approach. Evol Syst. 2020;11(2):215–26.

    Article  Google Scholar 

  37. Larsen JB. Going beyond bdi for agent-based simulation. Journal of Information and Telecommunication. 2019;3(4):446–64.

    Article  MathSciNet  Google Scholar 

  38. Taillandier, P., Bourgais, M., Caillou, P., Adam, C., Gaudou, B.: A bdi agent architecture for the gama modeling and simulation platform. In: International Workshop on Multi-Agent Systems and Agent-Based Simulation, pp. 3–23 (2016). Springer

  39. Larsen, J.B.: Hospital staff planning with multi-agent goals. PhD thesis, Department of Applied Mathematics and Computer Science, Technical University of Denmark (2019)

  40. Muto, T.J., Bolivar, E.B., González, E.: Bdi multi-agent based simulation model for social ecological systems. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 279–288 (2020). Springer

  41. González, E., Avila, J., Bustacara, C.: Besa: Behavior-oriented, event-driven, social-based agent framework. In: PDPTA, vol. 3, pp. 1033–1039 (2003)

  42. Ricci, A., Croatti, A., Bordini, R., Hübner, J., Boissier, O.: Exploiting simulation for mas programming and engineering-the jacamo-sim platform. In: 8th International Workshop on Engineering Multi-Agent Systems (EMAS 2020) (2020)

  43. Boissier O, Bordini RH, Hübner JF, Ricci A, Santi A. Multi-agent oriented programming with jacamo. Sci Comput Program. 2013;78(6):747–61.

    Article  Google Scholar 

  44. Bhattacharya, P., Mooij, A., Dell’Anna, D., Dastani, M., Logan, B., Swarup, S.: Pansim+ sim-2apl: a framework for large-scale distributed simulation with complex agents. In: International Workshop on Engineering Multi-Agent Systems, pp. 1–21 (2021). Springer

  45. Mooij, J.d., Dell’Anna, D., Bhattacharya, P., Dastani, M., Logan, B., Swarup, S.: Quantifying the effects of norms on covid-19 cases using an agent-based simulation. In: International Workshop on Multi-Agent Systems and Agent-Based Simulation, pp. 99–112 (2021). Springer

  46. Dastani M. 2apl: a practical agent programming language. Auton Agent Multi-Agent Syst. 2008;16(3):214–48.

    Article  Google Scholar 

  47. Klügl F. Affordance-Based Interaction Design for Agent-Based Simulation Models. In: Bulling N, editor. Multi-Agent Systems. Cham: Springer; 2015. p. 51–66.

    Google Scholar 

  48. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton-Mifflin, (1979)

  49. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent systems. Autonomous Agents and Multi-Agent Systems 14(1) (2007). 10.1007/s10458-006-0012-0

  50. Behrens, T., Hindriks, K.V., Bordini, R.H., Braubach, L., Dastani, M., Dix, J., Hübner, J., Pokahr, A.: An Interface for Agent-Environment Interaction. In: Collier, R., Dix, J., Novák, P. (eds.) Programming Multi-Agent Systems. Lecture Notes in Computer Science, vol. 6599, pp. 139–158. Springer, (2012). 10.1007/978-3-642-28939-2_8

  51. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A Framework for Prototyping Artifact-Based Environments in MAS. In: Weyns, D., Parunak, H.V., Michel, F. (eds.) Environments for Multi-Agent Systems III. Lecture Notes in Computer Science, vol. 4389, pp. 67–86. Springer, (2007). 10.1007/978-3-540-71103-2_4

  52. Ciortea, A., Mayer, S., Michahelles, F.: Repurposing Manufacturing Lines on the Fly with Multi-Agent Systems for the Web of Things. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems. AAMAS ’18, pp. 813–822. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2018)

  53. Jooa J, Kimb N, Wyskc RA, Rothrockd L, Sone Y-J, Ohb Y-G, Leef S. Agent-based simulation of affordance-based human behaviors in emergency evacuation. Simul Model Pract Theory. 2013;32:99–115.

    Article  Google Scholar 

  54. Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric Affordance Fields in Pedestrian Steering. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games. I3D ’09, pp. 215–223. Association for Computing Machinery, New York, NY, USA (2009). 10.1145/1507149.1507185.

  55. Ksontini F, Mandiau R, Guessoum Z, Espié S. Affordance-based agent model for road traffic simulation. Auton Agent Multi-Agent Syst. 2015;29(5):821–49. https://doi.org/10.1007/s10458-014-9269-x.

    Article  Google Scholar 

  56. Papasimeon M. Modelling agent-environment interaction in multi-agent simulations with affordances. Defence Science and Technology Organisation, Air Operations Division: Phd; 2010.

  57. Guinard, D.D., Trifa, V.M.: Building the Web of Things vol. 3. Manning Publications Shelter Island, (2016)

  58. Berners-Lee T, Hendler J, Lassila O. The semantic web. Sci Am. 2001;284(5):34–43.

    Article  Google Scholar 

  59. Bizer, C., Heath, T., Berners-Lee, T.: Linked data: The story so far. In: Semantic Services, Interoperability and Web Applications: Emerging Concepts, pp. 205–227. IGI Global, (2011)

  60. Charpenay, V., Käbisch, S.: On modeling the physical world as a collection of things: The w3c thing description ontology. In: European Semantic Web Conference, pp. 599–615 (2020). Springer

  61. Zhou Y, De S, Wang W, Moessner K. Search techniques for the web of things: A taxonomy and survey. Sensors. 2016;16(5):600.

    Article  Google Scholar 

  62. Guinard, D., Trifa, V.: Towards the web of things: Web mashups for embedded devices. In: Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web (MEM 2009), in Proceedings of WWW (International World Wide Web Conferences), Madrid, Spain, vol. 15, p. 8 (2009)

  63. Noura, M., Gaedke, M.: Wotdl: web of things description language for automatic composition. In: 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 413–417 (2019). IEEE

  64. Savaglio C, Ganzha M, Paprzycki M, Bădică C, Ivanović M, Fortino G. Agent-based internet of things: State-of-the-art and research challenges. Futur Gener Comput Syst. 2020;102:1038–53.

    Article  Google Scholar 

  65. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems with hypermedia. In: International Workshop on Engineering Multi-Agent Systems, pp. 285–301 (2018). Springer

  66. Vachtsevanou, D., Junker, P., Ciortea, A., Mizutani, I., Mayer, S.: Long-lived agents on the web: Continuous acquisition of behaviors in hypermedia environments. In: Companion Proceedings of the Web Conference 2020, pp. 185–189 (2020)

  67. Montesi, F., Weber, J.: Circuit breakers, discovery, and api gateways in microservices. arXiv preprint arXiv:1609.05830 (2016)

  68. Ciortea, A., Mayer, S., Boissier, O., Gandon, F.: Exploiting interaction affordances: On engineering autonomous systems for the web of things. In: Second W3C Workshop on the Web of Things The Open Web to Challenge IoT Fragmentation, Munich, Germany (2019)

  69. Collier, R.W., O’Neill, E., Lillis, D., O’Hare, G.: Mams: Multi-agent microservices. In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 655–662 (2019)

  70. O’Neill, E., Lillis, D., O’Hare, G.M., Collier, R.W.: Explicit modelling of resources for multi-agent microservices using the cartago framework. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (2020)

  71. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with agentspeak (l). In: International Conference on Principles and Practice of Multi-Agent Systems, pp. 351–366 (2015). Springer

  72. Dhaon, A., Collier, R.W.: Multiple inheritance in agentspeak (l)-style programming languages. In: Proceedings of the 4th International Workshop on Programming Based on Actors Agents & Decentralized Control, pp. 109–120 (2014)

  73. Christley, S., Xiang, X., Madey, G.: An ontology for agent-based modeling and simulation. In: Proceedings of the Agent 2004 Conference (2004). Citeseer

  74. Simeone D, Fioravanti A. An ontology-based system to support agent-based simulation of building use. Journal of Information Technology in Construction (ITcon). 2012;17(16):258–70.

    Google Scholar 

  75. Livet, P., Müller, J.P., Phan, D., Sanders, L., Auatabu, T.: Ontology, a mediator for agent-based modeling in social science (2010)

  76. Petrov, V.: Process ontology in the context of applied philosophy. Ontological Landscapes: Recent Thought on Conceptual Interfaces between Science and Philosophy, 137 (2011)

  77. Hofmann, M.: Ontologies in modeling and simulation: An epistemological perspective. In: Ontology, Epistemology, and Teleology for Modeling and Simulation, pp. 59–87. Springer, (2013)

  78. Horsch, M.T., Toti, D., Chiacchiera, S., Seaton, M.A., Goldbeck, G., Todorov, I.T.: Osmo: Ontology for simulation, modelling, and optimization (2021)

  79. Okuyama, F.Y., Vieira, R., Bordini, R.H., da Rocha Costa, A.C.: An ontology for defining environments within multi-agent simulations. In: Workshop on Ontologies and Metamodeling in Software and Data Engineering (2006). Citeseer

  80. Kang, D., Bing, Z.C., Song, W., Hu, Z., Chen, S., Zhang, J., Xi, H.: Automatic construction of agent-based simulation using business process diagrams and ontology-based models. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 1793–1795 (2017)

  81. Merdan, M., Vittori, L., Koppensteiner, G., Vrba, P., Favre-Bulle, B.: Simulation of an ontology-based multi-agent transport system. In: 2008 SICE Annual Conference, pp. 3339–3343 (2008). IEEE

  82. Gorshkov, S.: Building ontologies for agent-based simulation. In: International Conference in Swarm Intelligence, pp. 185–193 (2015). Springer

  83. Warden, T., Porzel, R., Gehrke, J.D., Herzog, O., Langer, H., Malaka, R.: Towards ontology-based multiagent simulations: The PlaSMA approach. In: ECMS, pp. 50–56 (2010)

  84. Larioui, J., Byed, E.: Towards a semantic layer design for an advanced intelligent multimodal transportation system. International Journal of Advanced Trends in Computer Science and Engineering 2018 (2020)

  85. Cho S, Kang J-Y, Knapen L, Bellemans T, Janssens D, Wets G, Hwang C-S, et al. An activity-based carpooling microsimulation using ontology. Procedia Computer Science. 2013;19:48–55.

    Article  Google Scholar 

  86. Belohlavek, R., Macko, J.: Selecting important concepts using weights. In: International Conference on Formal Concept Analysis (ICFCA), pp. 65–80. Springer, (2011)

  87. Vitkute-Adzgauskiene, D., Markievicz, I., Krilavicius, T., Tamosiunaite, M.: Learning and execution of Action Categories (ACAT). https://if.vdu.lt/en/research/projects/project-learning-and-execution-of-action-categories-acat

  88. Ghanadbashi, S., Golpayegani, F.: An ontology-based intelligent traffic signal control model. (2021). International Intelligent Transportation Systems Conference (ITSC)

  89. Feld, M., Müller, C.: The automotive ontology: Managing knowledge inside the vehicle and sharing it between cars. In: Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 79–86 (2011)

  90. Yazdizadeh, A., Farooq, B.: Smart mobility ontology: Current trends and future directions. Handbook of Smart Cities, 1–36 (2020)

  91. Katsumi M, Fox M. Ontologies for transportation research: A survey. Transportation Research Part C: Emerging Technologies. 2018;89:53–82.

    Article  Google Scholar 

  92. Chen, W., Kloul, L.: An advanced driver assistance test cases generation methodology based on highway traffic situation description ontologies. In: International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management, pp. 93–113 (2018). Springer

  93. Viktorović, M., Yang, D., Vries, B.d.: Connected Traffic Data Ontology (CTDO) for intelligent urban traffic systems focused on connected (Semi) autonomous vehicles. Sensors 20(10), 2961 (2020)

  94. Fernando, R.: The impact of Planned Special Events (PSEs) on urban traffic congestion. EAI Endorsed Transactions on Scalable Information Systems 6(23) (2019)

  95. Chen C, Zhao X, Liu H, Ren G, Zhang Y, Liu X. Assessing the influence of adverse weather on traffic flow characteristics using a driving simulator and VISSIM. Sustainability. 2019;11(3):830.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rem Collier.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Web Information Systems and Technologies 2021” guest edited by Joaquim Filipe, Francisco Domínguez Mayo and Massimo Marchiori.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collier, R., Russell, S., Ghanadbashi, S. et al. Towards the Use of Hypermedia MAS and Microservices for Web Scale Agent-Based Simulation. SN COMPUT. SCI. 3, 510 (2022). https://doi.org/10.1007/s42979-022-01424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01424-2

Keywords

Navigation