Skip to main content
Log in

Complex Gradient Function Based Image Descriptor

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Local feature descriptors are widely employed to describe local properties of image patches when constructing a discriminative visual representation for efficient classification. Image gradient is a robust characteristic of digital image which possesses localized spatial information for each pixel along all the directions. Utilizing gradient information at the pixel level is a commonly used technique in various fields of digital image processing, especially while designing Local Feature Descriptor (LFD). In this paper, the magnitude and direction of image gradient is utilized to design an LFD. We propose a novel LFD based on Complex Gradient Function (CGF), which effectively maps a pixel from the spatial plane into its complex extension accommodating the magnitude and direction of image gradient at that pixel. To justify the genericness of the proposed descriptor, we have exploited it on two different kinds of applications, namely, human action recognition (HAR) from depth sequences and human authentication using iris biometrics. Robustness and efficiency of our descriptor are demonstrated with extensive experimental analysis on benchmark datasets IITDelhi, MMU-v2, CASIA-Iris, UBIRIS, and MICHE I for iris authentication, and MSR Action 3D dataset and MSR Gesture 3D dataset for human action recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust features (surf). Comput Vis Image Underst. 2008;110(3):346–59.

    Article  Google Scholar 

  2. Chen J, Shan S, He C, Zhao G, Pietikainen M, Chen X, Gao W. Wld: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell. 2010;32(9):1705–20.

    Article  Google Scholar 

  3. Chen C, Liu K, Kehtarnavaz N. Real-time human action recognition based on depth motion maps. J Real-time Image Process. 2016;12(1):155–63.

    Article  Google Scholar 

  4. Chen C, Jafari R, Kehtarnavaz N. Action recognition from depth sequences using depth motion maps-based local binary patterns. In: Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on. IEEE; 2015. p. 1092–1099.

  5. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: International conference on computer vision & pattern recognition (CVPR’05), vol. 1. IEEE Computer Society; 2005. p. 886–893.

  6. De Marsico M, Nappi M, Narducci F, Proença H. Insights into the results of miche i-mobile iris challenge evaluation. Pattern Recogn. 2018;74:286–304.

    Article  Google Scholar 

  7. Deng W, Hu J, Guo J. Compressive binary patterns: designing a robust binary face descriptor with random-field eigenfilters. IEEE Trans Pattern Anal Mach Intell. 2019;41(3):758–67.

    Article  Google Scholar 

  8. Du Y, Wang W, Wang L. Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 1110–1118.

  9. Guo Y, Bennamoun M, Sohel F, Lu M, Wan J, Kwok NM. A comprehensive performance evaluation of 3d local feature descriptors. Int J Comput Vis. 2016;116(1):66–89.

    Article  MathSciNet  Google Scholar 

  10. Institute of Automation, Chinese Academy of Sciences. CASIA Iris Database. http://biometrics.idealtest.org/

  11. Ke Y, Sukthankar R, et al. Pca-sift: a more distinctive representation for local image descriptors. CVPR. 2004;2(4):506–13.

    Google Scholar 

  12. Kumar A, Passi A. Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn. 2010;43(3):1016–26.

    Article  MATH  Google Scholar 

  13. Kumar G, Bhatia PK. A detailed review of feature extraction in image processing systems. In: 2014 fourth international conference on advanced computing communication technologies. 2014. p. 5–12. 10.1109/ACCT.2014.74

  14. Kurakin A, Zhang Z, Liu Z. A real time system for dynamic hand gesture recognition with a depth sensor. In: 2012 Proceedings of the 20th European signal processing conference (EUSIPCO). IEEE; 2012. p. 1975–1979.

  15. Li W, Zhang Z, Liu Z. Action recognition based on a bag of 3d points. In: 2010 IEEE computer society conference on computer vision and pattern recognition-workshops. IEEE; 2010. p. 9–14.

  16. Liu Z, Zhang C, Tian Y. 3d-based deep convolutional neural network for action recognition with depth sequences. Image Vis Comput. 2016;55:93–100.

    Article  Google Scholar 

  17. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.

    Article  Google Scholar 

  18. Malaysia Multimedia University Iris Database. http://pesona.mmu.edu

  19. Mian AS, Bennamoun M, Owens R. Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans Pattern Anal Mach Intell. 2006;28(10):1584–601.

    Article  Google Scholar 

  20. Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell. 2005;27(10):1615–30. https://doi.org/10.1109/TPAMI.2005.188.

    Article  Google Scholar 

  21. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002;24(7):971–87.

    Article  MATH  Google Scholar 

  22. Oreifej O, Liu Z. Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2013. p. 716–723.

  23. Proenca H, Filipe S, Santos R, Oliveira J, Alexandre LA. The ubirisv2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans Pattern Anal Mach Intell. 2010;32(8):1529–35.

    Article  Google Scholar 

  24. Rahmani H, Mahmood A, Huynh DQ, Mian A. Real time action recognition using histograms of depth gradients and random decision forests. In: IEEE winter conference on applications of computer vision. IEEE; 2014. p. 626–633.

  25. Roy SK, Chanda B, Chaudhuri BB, Banerjee S, Ghosh DK, Dubey SR. Local directional zigzag pattern: a rotation invariant descriptor for texture classification. Pattern Recogn Lett. 2018;108:23–30.

    Article  Google Scholar 

  26. Shekar BH, Rathnakara Shetty P, Sharmila Kumari M, Mestetsky L. Action recognition using undecimated dual tree complex wavelet transform from depth motion maps/depth sequences. In: ISPRS-international archives of the photogrammetry, remote sensing and spatial information sciences, XLII-2/W12. 2019. p. 203–209. 10.5194/isprs-archives-XLII-2-W12-203-2019

  27. Shekar B, Bhat SS, Mestetsky L. Iris recognition by learning fragile bits on multi-patches using monogenic riesz signals. In: International conference on pattern recognition and machine intelligence. Springer; 2019. p. 462–471.

  28. Shetty PR, Shekar B, Mestetsky L, Prasad MM. Stacked filter bank based descriptor for human action recognition from depth sequences. In: 2019 IEEE conference on information and communication technology. IEEE; 2019. p. 1–6.

  29. Vieira AW, Nascimento ER, Oliveira GL, Liu Z, Campos MFM. Stop: space-time occupancy patterns for 3d action recognition from depth map sequences. In: Alvarez L, Mejail M, Gomez L, Jacobo J, editors. Progress in pattern recognition, image analysis, computer vision, and applications. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 252–9.

    Chapter  Google Scholar 

  30. Vieira AW, Nascimento ER, Oliveira GL, Liu Z, Campos MF. On the improvement of human action recognition from depth map sequences using space-time occupancy patterns. Pattern Recogn Lett. 2014;36:221–7.

    Article  Google Scholar 

  31. Wang J, Liu Z, Chorowski J, Chen Z, Wu Y. Robust 3d action recognition with random occupancy patterns. In: Computer vision–ECCV 2012. Springer; 2012. p. 872–885.

  32. Xia L, Chen CC, Aggarwal JK. View invariant human action recognition using histograms of 3d joints. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. IEEE; 2012. p. 20–27.

  33. Xia Z, Yuan C, Lv R, Sun X, Xiong NN, Shi YQ. A novel weber local binary descriptor for fingerprint liveness detection. IEEE Trans Syst Man Cybern Syst. 2018

  34. Yang X, Tian YL. Eigenjoints-based action recognition using naïve-bayes-nearest-neighbor. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. 2012. p. 14–19. 10.1109/CVPRW.2012.6239232

  35. Yang X, Zhang C, Tian Y. Recognizing actions using depth motion maps-based histograms of oriented gradients. In: Proceedings of the 20th ACM international conference on multimedia. ACM; 2012. p. 1057–1060.

  36. Zhang C, Tian Y. Edge enhanced depth motion map for dynamic hand gesture recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2013. pp. 500–505.

  37. Zhao C, Chen M, Zhao J, Wang Q, Shen Y. 3d behavior recognition based on multi-modal deep space-time learning. Appl Sci. 2019;9(4):716.

    Article  Google Scholar 

  38. Zuo Z, Wei B, Chao F, Qu Y, Peng Y, Yang L. Enhanced gradient-based local feature descriptors by saliency map for egocentric action recognition. Appl Syst Innov. 2019;2(1):7.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported jointly by the Department of Science & Technology, Govt. of India and Russian Foundation for Basic Research, Russian Federation under Grant No. INT/RUS/RFBR/P-248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rathnakara Shetty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Recent Trends in Computer Vision” guest edited by P. Nagabhushan, Balasubramaniyan Raman, Satish Kumar Singh and Subrahmanyam Murala.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekar, B.H., Shetty, P.R., Bhat, S.S. et al. Complex Gradient Function Based Image Descriptor. SN COMPUT. SCI. 4, 42 (2023). https://doi.org/10.1007/s42979-022-01436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01436-y

Keywords

Navigation