Skip to main content
Log in

Development of Noise Tolerant Document Image Binarization Technique Employing an Accurate Square Root Circuit

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Stochastic computing (SC) is a re-emerging paradigm that is inherently immune towards noise and shows low area and power implementation of conventional binary logic based approaches. A stochastic square root circuit is proposed, which shows faster convergence and less hardware area compared to the state-of-the-art methods and can be used for efficient real time implementation of various algorithms that employ the square root circuit. In this paper, the Nick’s binarization algorithm is introduced as a case study to identify its promise using various statistical metrics. This paper also introduces structural modifications of some of the basic stochastic circuits obeying certain boundary conditions. A squarer circuit requiring the least number of delay elements is calculated to reduce the hardware cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Mitra S, Santosh KC, Naskar MK. Niblack binarization on document images: area efficient, low cost, and noise tolerant stochastic architecture. Int J Pattern Recognit Artif Intell. 2021;35(04):2154013. https://doi.org/10.1142/S0218001421540136.

    Article  Google Scholar 

  2. Ypma TJ. Historical development of the Newton-Raphson method. SIAM Rev. 1995;37(4):531–51. https://doi.org/10.1137/1037125.

    Article  MathSciNet  MATH  Google Scholar 

  3. Toral SL, Quero JM, Franquelo LG. Stochastic pulse coded arithmetic. In: 2000 IEEE International Symposium on Circuits and Systems (ISCAS), 2000:1:599–6021 . https://doi.org/10.1109/ISCAS.2000.857166.

  4. Mitra S, Banerjee D, Naskar MK. A low latency stochastic square root circuit. In: 2021 34th International Conference on VLSI Design and 2021 20th International Conference on Embedded Systems (VLSID), 2021; p. 7–12 https://doi.org/10.1109/VLSID51830.2021.00006.

  5. Gaines BR. In: Tou, JT. editors. Stochastic computing systems, Boston: Springer; 1969, p. 37–172. https://doi.org/10.1007/978-1-4899-5841-9_2.

  6. Poppelbaum, WJ, Afuso C, Esch JW. Stochastic computing elements and systems. In: Proceedings of the November 14–16, 1967, Fall Joint Computer Conference. AFIPS ’67 (Fall), ACM, New York, NY, USA, 1967; pp. 635–644. https://doi.org/10.1145/1465611.1465696.

  7. Alaghi A, Hayes JP. Exploiting correlation in stochastic circuit design. In: 2013 IEEE 31st International Conference on computer design (ICCD), 2013; p. 39–46. https://doi.org/10.1109/ICCD.2013.6657023.

  8. Ting P, Hayes JP. Stochastic logic realization of matrix operations. In: 2014 17th Euromicro Conference on digital system design, 2014; p. 356–364. https://doi.org/10.1109/DSD.2014.75.

  9. Chen T, Hayes JP. Design of division circuits for stochastic computing. In: 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2016; p. 116–121. https://doi.org/10.1109/ISVLSI.2016.48.

  10. Parker KP, McCluskey EJ. Probabilistic treatment of general combinational networks. IEEE Trans Comput. 1975;C–24(6):668–70. https://doi.org/10.1109/T-C.1975.224279.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ting P, Hayes JP. On the role of sequential circuits in stochastic computing. In: Proceedings of the on Great Lakes Symposium on VLSI 2017. GLSVLSI ’17, ACM, New York, NY, USA, 2017; p. 475–478. https://doi.org/10.1145/3060403.3060453.

  12. Alaghi A, Cheng Li, Hayes, J.P.: Stochastic circuits for real-time image-processing applications. In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), 2013; p. 1–6. https://doi.org/10.1145/2463209.2488901.

  13. Alaghi A, Hayes JP. Survey of stochastic computing. ACM Trans Embed Comput Syst. 2013;12(2s):92–19219. https://doi.org/10.1145/2465787.2465794.

    Article  Google Scholar 

  14. Ting P, Hayes JP. Eliminating a hidden error source in stochastic circuits. In: 2017 IEEE International Symposium on defect and fault tolerance in VLSI and nanotechnology systems (DFT), 2017; p. 1–6. https://doi.org/10.1109/DFT.2017.8244436.

  15. Lee VT, Alaghi A, Hayes JP, Sathe V, Ceze L. Energy-efficient hybrid stochastic-binary neural networks for near-sensor computing. In: Design, Automation Test in Europe Conference Exhibition (DATE), 2017; p. 213–18 https://doi.org/10.23919/DATE.2017.7926951

  16. Ambrosio V, Molica Bisci G, Repovš D. Nonlinear equations involving the square root of the Laplacian. Discrete Contin Dyn Syst S. 2019;12(2):151–70. https://doi.org/10.3934/dcdss.2019011.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar V, Gupta P. Importance of statistical measures in digital image processing. Int J Emerg Technol Adv Eng. 2012;2(8):56-62.

  18. Yang P, Song W, Zhao X, Zheng R, Qingge L. An improved Otsu threshold segmentation algorithm. Int J Comput Sci Eng. 2020;22(1):146–53.

    Google Scholar 

  19. Liu W, Hu E-W, Su B, Wang J. Using machine learning techniques for dsp software performance prediction at source code level. Connect Sci. 2021;33(1):26–41.

    Article  Google Scholar 

  20. Chouder R, Benhamidouche N. New exact solutions to nonlinear diffusion equation that occurs in image processing. Int J Comput Sci Math. 2019;10(4):364–74.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen K, Wang G, Chen J, Yuan S, Wei G. Impact of climate changes on manufacturing: Hodrick-Prescott filtering and a partial least squares regression model. Int J Comput Sci Eng. 2020;22(2–3):211–20.

    Google Scholar 

  22. Liu A, Li P, Deng X, Ren L. A sigmoid attractiveness based improved firefly algorithm and its applications in iir filter design. Connect Sci. 2021;33(1):1–25.

    Article  Google Scholar 

  23. Ren H, Hoang LB, Chen H-C, Wei BWY. Design of a 16-bit cmos divider/square-root circuit. In: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, 1993; p. 807–8111. https://doi.org/10.1109/ACSSC.1993.342633.

  24. Kabuo H, Taniguchi T, Miyoshi A, Yamashita H, Urano M, Edamatsu H, Kuninobu S. Accurate rounding scheme for the Newton-Raphson method using redundant binary representation. IEEE Trans Comput. 1994;43(1):43–51.

    Article  Google Scholar 

  25. Verma K. On the centroidal mean newton’s method for simple and multiple roots of nonlinear equations. Int J Comput Sci Math. 2016;7(2):126–43.

    Article  MathSciNet  MATH  Google Scholar 

  26. Haridas SG, Ziavras SG. Fpga implementation of a Cholesky algorithm for a shared-memory multiprocessor architecture. Parallel Algorithms Appl. 2004;19(4):211–26.

    Article  MathSciNet  MATH  Google Scholar 

  27. Vázquez Á, Bruguera JD. Iterative algorithm and architecture for exponential, logarithm, powering, and root extraction. IEEE Trans Comput. 2012;62(9):1721–31.

    Article  MathSciNet  MATH  Google Scholar 

  28. Singh A. An efficient fifth-order iterative scheme for solving a system of nonlinear equations and pde. Int J Comput Sci Math. 2020;11(4):316–26.

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu D, San Miguel J. In-stream stochastic division and square root via correlation. In: 2019 56th ACM/IEEE Design Automation Conference (DAC), IEEE, 2019; p. 1–6.

  30. Li P, Lilja DJ. Using stochastic computing to implement digital image processing algorithms. In: Proceedings of the 2011 IEEE 29th International Conference on computer design. ICCD ’11, IEEE Computer Society, USA, 2011; p. 154–161. https://doi.org/10.1109/ICCD.2011.6081391.

  31. Xu W, Xie G, Wang S, Lin Z, Han J, Zhang Y. A stochastic computing architecture for local contrast and mean image thresholding algorithm. Int J Circ Theory Appl. 2022. https://doi.org/10.1002/cta.3320.

    Article  Google Scholar 

  32. Lee VT, Alaghi A, Pamula R, Sathe VS, Ceze L, Oskin M. Architecture considerations for stochastic computing accelerators. IEEE Trans Comput Aided Des Integr Circ Syst. 2018;37(11):2277–89. https://doi.org/10.1109/TCAD.2018.2858338.

    Article  Google Scholar 

  33. Baker TJ, Sun Y, Hayes JP. Benefits of stochastic computing in hearing aid filterbank design. In: 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2021; p. 1–5. https://doi.org/10.1109/BioCAS49922.2021.9645021.

  34. He S, Schomaker L, Shi Z. Monk Cuper Set (MCS) for benchmarking historical document image binarization. https://doi.org/10.5281/zenodo.4767809.

  35. Moghaddam RF. Objective evaluation of binarization methods for document images. 2013. https://in.mathworks.com/matlabcentral/fileexchange/27652-objective-evaluation-of-binarization-methods-for-document-images. Accessed 31 Mar 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamali Mitra.

Ethics declarations

Conflict of Interest

There is no conflict of interest with others.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Advances in Applied Image Processing and Pattern Recognition” guest edited by K. C. Santosh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, S., Banerjee, D. & Naskar, M.K. Development of Noise Tolerant Document Image Binarization Technique Employing an Accurate Square Root Circuit. SN COMPUT. SCI. 4, 99 (2023). https://doi.org/10.1007/s42979-022-01470-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01470-w

Keywords

Navigation