Skip to main content
Log in

Performance Analysis and Nash Equilibria in a Taxi-Passenger System with Two Types of Passenger

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

This paper analyzes a taxi-passenger queueing system where there are two types of passengers differentiated by their mean matching times with taxis. System states can be observable or unobservable to agents. Performance measures of the system are derived using a Markov chain with three-dimensional states. Furthermore, we consider the case where multiple types of agents are strategic and use a multi-population game theoretical framework to analyze the system in equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu Z, Yin Y, Ye J. On the supply curve of ride-hailing systems. Transp Res Part B Methodol. 2020;132:29–43.

    Article  Google Scholar 

  2. Jacob J, Roet-Green R. Ride solo or pool: Designing price-service menus for a ride-sharing platform. Eur J Oper Res. 2021;295(3):1008–24.

    Article  MathSciNet  MATH  Google Scholar 

  3. Conolly B, Parthasarathy P, Selvaraju N. Double-ended queues with impatience. Comput Oper Res. 2002;29(14):2053–72.

    Article  MathSciNet  MATH  Google Scholar 

  4. Elalouf A, Perlman Y, Yechiali U. A double-ended queueing model for dynamic allocation of live organs based on a best-fit criterion. Appl Math Model. 2018;60:179–91.

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu X, Gong Q, Kulkarni VG. Diffusion models for double-ended queues with renewal arrival processes. Stoch Syst. 2015;5(1):1–61.

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaspi H, Perry D. Inventory systems of perishable commodities. Adv Appl Probab. 1983;15(3):674–85.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kaspi H, Perry D. Inventory systems for perishable commodities with renewal input and poisson output. Adv Appl Probab. 1984;16(2):402–21.

    Article  MathSciNet  MATH  Google Scholar 

  8. Perry D, Stadje W. Perishable inventory systems with impatient demands. Math Methods Oper Res. 1999;50(1):77–90.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kendall DG. Some problems in the theory of queues. J R Stat Soc Ser B (Methodol). 1951;13(2):151–73.

    MathSciNet  MATH  Google Scholar 

  10. Dobbie JM. Letter to the editor-a doubled-ended queuing problem of Kendall. Oper Res. 1961;9(5):755–7.

    Article  MATH  Google Scholar 

  11. Di Crescenzo A, Giorno V, Kumar BK, Nobile AG. A double-ended queue with catastrophes and repairs, and a jump-diffusion approximation. Methodol Comput Appl Probab. 2012;14(4):937–54.

    Article  MathSciNet  MATH  Google Scholar 

  12. Naor P. The regulation of queue size by levying tolls. Econometrica. 1969;37(1):15–24.

    Article  MATH  Google Scholar 

  13. Edelson NM, Hildebrand K. Congestion tolls for Poisson queueing processes. Econometrica. 1975;43(1):81–92.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hassin R, Haviv M. To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Boston: Kluwer Academic Publishers; 2003.

    Book  MATH  Google Scholar 

  15. Hassin R. Rational Queueing. 1st ed. New York: Chapman and Hall/CRC; 2016.

    MATH  Google Scholar 

  16. Hassin R, Haviv M. Nash equilibrium and subgame perfection in observable queues. Ann Oper Res. 2002;113:15–26.

    Article  MathSciNet  MATH  Google Scholar 

  17. Economou A. In: Anisimov, V., Limnios, N. (eds.) The Impact of Information Structure on Strategic Behavior in Queueing Systems, pp. 2021:137–169. Wiley-ISTE

  18. Shi Y, Lian Z. Optimization and strategic behavior in a passenger-taxi service system. Eur J Oper Res. 2016;249(3):1024–32.

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang F, Wang J, Zhang ZG. Strategic behavior and social optimization in a double-ended queue with gated policy. Comput Ind Eng. 2017;114:264–73.

    Article  Google Scholar 

  20. Jiang T, Chai X, Liu L, Lv J, Ammar SI. Optimal pricing and service capacity management for a matching queue problem with loss-averse customers. Optimization 2020

  21. Nguyen HQ, Phung-Duc T. Strategic customer behavior and optimal policies in a passenger-taxi double-ended queueing system with multiple access points and nonzero matching times. Queueing Systems 2022; 102(3-4):481–508.

  22. Nguyen HQ, Phung-Duc T. Supply-demand equilibria and multivariate optimization of social welfare in double-ended queueing systems. Comput Ind Eng. 2022;170: 108306.

    Article  Google Scholar 

  23. Nguyen HQ, Phung-Duc T. A two-population game in observable double-ended queuing systems. Oper Res Lett. 2022;50(4):407–14.

    Article  MathSciNet  MATH  Google Scholar 

  24. Nguyen HQ, Phung-Duc T. Queueing analysis and nash equilibria in an unobservable taxi-passenger system with two types of passenger. In: ICORES, 2022:48–55

  25. Neuts MF. Matrix Geometric Solutions in Stochastic Models - An Algorithmic Approach. 1st ed. Baltimore: Johns Hopkins University Press; 1981.

    MATH  Google Scholar 

  26. Haviv M, Oz B. Self-regulation of an unobservable queue. Manag Sci. 2018;64(5):2380–9.

    Article  Google Scholar 

Download references

Acknowledgements

The research of Hung Q. Nguyen is supported by JST SPRING, Grant Number JPMJSP2124. The research of Tuan Phung-Duc is supported in part by JSPS KAKENHI Grant Number 21K11765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Q. Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Advances on Operations Research and Enterprise Systems” guest edited by Marc Demange, Federico Liberatore and Greg H. Parlier.

Appendix A Definition of Block Matrices in Section “Performance Measures”

Appendix A Definition of Block Matrices in Section “Performance Measures”

$$\begin{aligned}&{\mathcal {A}}^{(K)},{\mathcal {B}}^{(K)},{\mathcal {C}}^{(K)} \in {\mathbb {M}}\nonumber \\&\left( \frac{(S+1)(S+2)}{2}+(K-S)(S+1), \frac{(S+1)(S+2)}{2}+(K-S)(S+1) \right) \end{aligned}$$

such that

$$\begin{aligned}&{\mathcal {C}}^{(K)}=diag(\lambda ,\lambda ,...,\lambda );\\&{\mathcal {A}}^{(K)}\left( \frac{(S+1)(S+2)}{2}+i(S+1)+j,\frac{S(S+1)}{2}+i(S+1)+j \right) \\&=\alpha (j-1)\mu _1+(1-\alpha )(S-(j-1))\mu _2,\\&{\mathcal {A}}^{(K)}\left( \frac{(S+1)(S+2)}{2}+i(S+1)+j, \frac{S(S+1)}{2}+i(S+1)+(j+1) \right) \\&=\alpha (S-(j-1))\mu _2,\\&{\mathcal {A}}^{(K)}\left( \frac{(S+1)(S+2)}{2}+i(S+1)+(j+1),\frac{S(S+1)}{2}+i(S+1)+j \right) \\&=(1-\alpha )j\mu _1,\\&{\mathcal {B}}^{(K)}\left( \frac{S(S+1)}{2}+i(S+1)+j,\frac{(S+1)(S+2)}{2}+i(S+1)+(j+1) \right) =\lambda _t, \end{aligned}$$

for \(i=0,1,...,K-S\) and \(j=1,2,...,S+1;\)

$$\begin{aligned}&{\mathcal {A}}^{(K)}\left( \frac{(i+1)(i+2)}{2}+j,\frac{i(i+1)}{2}+j \right) =(i-(j-1))\mu _2, \\&{\mathcal {A}}^{(K)}\left( \frac{(i+1)(i+2)}{2}+(j+1),\frac{i(i+1)}{2}+j \right) =j\mu _1, \\&{\mathcal {B}}^{(K)}\left( \frac{i(i+1)}{2}+j,\frac{(i+1)(i+2)}{2}+j \right) =(1-\alpha )\lambda _t, \\&{\mathcal {B}}^{(K)}\left( \frac{i(i+1)}{2}+j,\frac{(i+1)(i+2)}{2}+(j+1) \right) =\alpha \lambda _t, \end{aligned}$$

for \(i=0,1,...,S-1\) and \(j=1,2,...,i+1.\)

For \(n<K\),

$$\begin{aligned}&{\mathcal {C}}^{(n)} \in {\mathbb {M}}\\&\left( \frac{(n+1)(n+2)}{2}+(K-n)(n+1),\frac{(n+1)(n+2)}{2}+(K-n)(n+2) \right) , \end{aligned}$$

for \(n \ge 1\), and

$$\begin{aligned}&{\mathcal {A}}^{(n)} \in {\mathbb {M}}\left( \frac{(n+1)(n+2)}{2}+(K-n)(n+1),\frac{n(n+1)}{2}+(K-(n-1))n \right) ,\\&{\mathcal {B}}^{(n)} \in {\mathbb {M}}\left( \frac{(n+1)(n+2)}{2}+(K-n)(n+1),\frac{(n+1)(n+2)}{2}+(K-n)(n+1) \right) , \end{aligned}$$

such that

$$\begin{aligned}&{\mathcal {C}}^{(n)}(i,i)=\lambda \end{aligned}$$

for \(i=1,2,...,\frac{(n+1)(n+2)}{2};\)

$$\begin{aligned}&{\mathcal {C}}^{(n)}\left( \frac{(n+1)(n+2)}{2}+i(n+1)+j,\frac{(n+1)(n+2)}{2}+i(n+2)+j \right) \\&=(1-\alpha )\lambda ,\\&{\mathcal {C}}^{(n)}\left( \frac{(n+1)(n+2)}{2}+i(n+1)+j,\frac{(n+1)(n+2)}{2}+i(n+2)+(j+1) \right) \\&=\alpha \lambda ,\\&{\mathcal {A}}^{(n)}\left( \frac{(n+1)(n+2)}{2}+i(n+1)+j,\frac{n(n+1)}{2}+i(n+1)+j \right) \\&=(n-(j-1))\mu _2,\\&{\mathcal {A}}^{(n)}\left( \frac{(n+1)(n+2)}{2}+i(n+1)+(j+1),\frac{n(n+1)}{2}+i(n+1)+j \right) \\&=j\mu _1,\\&{\mathcal {B}}^{(n)}\left( \frac{n(n+1)}{2}+i(n+1)+j,\frac{(n+1)(n+2)}{2}+i(n+1)+(j+1) \right) \\&=\lambda _t, \end{aligned}$$

for \(i=0,1,...,K-n\) and \(j=1,2,...,n+1;\)

$$\begin{aligned}&{\mathcal {A}}^{(n)}\left( \frac{(i+1)(i+2)}{2}+j,\frac{i(i+1)}{2}+j \right) \\&=(i-(j-1))\mu _2,\\&{\mathcal {A}}^{(n)}\left( \frac{(i+1)(i+2)}{2}+(j+1),\frac{i(i+1)}{2}+j \right) \\&=j\mu _1,\\&{\mathcal {B}}^{(n)}\left( \frac{i(i+1)}{2}+j,\frac{(i+1)(i+2)}{2}+j \right) \\&=(1-\alpha )\lambda _t,\\&{\mathcal {B}}^{(n)}\left( \frac{i(i+1)}{2}+j,\frac{(i+1)(i+2)}{2}+(j+1) \right) \\&=\alpha \lambda _t, \end{aligned}$$

for \(i=0,1,...,n-1\) and \(j=1,2,...,i+1;\) and \(n \ge 1\). Finally,

$$\begin{aligned}&\mathcal{B}^{(0)}(i,i) = -\sum _{j}\mathcal{A}^{(0)}(i,j) -\sum _{j \ne i}\mathcal{B}^{(0)}(i,j), \end{aligned}$$

and

$$\begin{aligned}&\mathcal{B}^{(n)}(i,i) = -\sum _{j}\left( \mathcal{A}^{(n)}(i,j)+\mathcal{C}^{(n)}(i,j)\right) -\sum _{j \ne i}\mathcal{B}^{(n)}(i,j) \end{aligned}$$

for \(n=1,...,K.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.Q., Phung-Duc, T. Performance Analysis and Nash Equilibria in a Taxi-Passenger System with Two Types of Passenger. SN COMPUT. SCI. 4, 73 (2023). https://doi.org/10.1007/s42979-022-01479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01479-1

Keywords

Navigation