Skip to main content
Log in

A Survey on Statistical and Machine Learning Algorithms Used in Electronic Noses for Food Quality Assessment

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

A deeper assessment of the nutritional and organoleptic potential of the items we consume is the first step toward knowing their capacity. Research is becoming more and more interested in developing quick and accurate instruments to assess touch, vision, hearing, and other senses under this impetus. This paper examines a variety of statistical and machine learning algorithms used for food quality applications with electronic nose technology. The latter was discussed, allowing us to say that different data collection devices and data analysis methods were used for each study that was undertaken. Setting up an experimental e-nose based on commercially accessible sensors would be simpler, quicker, and less expensive in a West African setting than buying a commercial e-nose to forecast local crop condition. There is a scarcity of studies that examine the connection between e-nose technologies and food quality in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used come from the request made on Web of Science. The data analyzed with bibliometric were presented in the article. However, if readers need the results of the Web of Science query. It can be made available.

References

  1. Abdullah A, Rahim N, Masnan M, Sa’ad F, Zakaria A, Shakaff A, Omar O. Chapter 11—rice and the electronic nose. In: Rodríguez-Méndez ML, editor. Electronic noses and tongues in food science. San Diego: Academic Press; 2016. p. 103–13. https://doi.org/10.1016/B978-0-12-800243-8.00011-1.

    Chapter  Google Scholar 

  2. Adams K, Suchy J, Lukow OM, et al. Detection of wheat variety flour aromas using an electronic nose. Electron J Environ Agric Food Chem. 2011;10(9):2861–73.

    Google Scholar 

  3. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal. 2000;22(5):717–27. https://doi.org/10.1016/S0731-7085(99)00272-1.

    Article  Google Scholar 

  4. Ali Z, O’Hare W, Theaker B. Detection of bacterial contaminated milk by means of a quartz crystal microbalance based electronic nose. J Therm Anal Calorim. 2003;71:155–61. https://doi.org/10.1023/A:1022274419166.

    Article  Google Scholar 

  5. Analytixlabs. Introduction to svm—support vector machine algorithm of machine learning. (2021). https://www.analytixlabs.co.in/blog/introduction-support-vector-machine-algorithm. (Published On July 7, 2021 and Accessed Nov 3, 2022).

  6. Aparicio R, Rocha SM, Delgadillo I, Morales MT. Detection of rancid defect in virgin olive oil by the electronic nose. J Agric Food Chem. 2000;48(3):853–60. https://doi.org/10.1021/jf9814087. (PMID: 10725163).

    Article  Google Scholar 

  7. Apetrei C, Ghasemi-Varnamkhasti M, Mirela Apetrei I. Chapter 27—Olive oil and combined electronic nose and tongue. In: Rodríguez-Méndez ML, editor. Electronic noses and tongues in food science. San Diego: Academic Press; 2016. p. 277–89. https://doi.org/10.1016/B978-0-12-800243-8.00027-5.

    Chapter  Google Scholar 

  8. Aria M, Cuccurullo C. bibliometrix: an r-tool for comprehensive science mapping analysis. J Informetrics. 2017;11(4):959–75. https://doi.org/10.1016/j.joi.2017.08.007.

    Article  Google Scholar 

  9. Avella JCG. Using linear discriminant analysis (lda) for data explore: Step by step. (2017, July). https://apsl.tech/en/blog/using-linear-discriminant-analysis-lda-data-explore-step-step. Accessed 31 Oct 2022.

  10. Baietto M, Wilson AD. Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors. 2015;15(1):899–931. https://doi.org/10.3390/s150100899.

    Article  Google Scholar 

  11. Balakrishnama S, Ganapathiraju A. Linear discriminant analysis—a brief tutorial. Inst Signal Inform Process. 1998;1998(18):1–8.

    Google Scholar 

  12. Balasubramanian S, Amamcharla J, Shin J-E. Chapter 7—Possible application of electronic nose systems for meat safety: an overview. In: Rodríguez-Méndez ML, editor. Electronic noses and tongues in food science. San Diego: Academic Press; 2016. p. 59–71. https://doi.org/10.1016/B978-0-12-800243-8.00007-X.

    Chapter  Google Scholar 

  13. Benedetti S, Sinelli N, Buratti S, Riva M. Shelf life of crescenza cheese as measured by electronic nose. J Dairy Sci. 2005;88(9):3044–51. https://doi.org/10.3168/jds.S0022-0302(05)72985-4.

    Article  Google Scholar 

  14. Berna AZ, Lammertyn J, Saevels S, Natale CD, Nicolaï BM. Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sens Actuat B: Chem. 2004;97(2):324–33. https://doi.org/10.1016/j.snb.2003.09.020.

    Article  Google Scholar 

  15. Bhandare P, Pendbhaje N, Narang A. Electronic nose: a review. RRJET. 2013;2:1–8.

    Google Scholar 

  16. Bhattacharyya N, Seth S, Tudu B, Tamuly P, Jana A, Ghosh D, Bhuyan M. Monitoring of black tea fermentation process using electronic nose. J Food Eng. 2007;80(4):1146–56. https://doi.org/10.1016/j.jfoodeng.2006.09.006.

    Article  Google Scholar 

  17. Bona E, dos Santos-Ferreira-da-Silva RS. Chapter 4—Coffee and the electronic nose. In: Rodríguez-Méndez ML, editor. Electronic noses and tongues in food science. San Diego: Academic Press; 2016. p. 31–8. https://doi.org/10.1016/B978-0-12-800243-8.00004-4.

    Chapter  Google Scholar 

  18. Branchini CG, Lvova L, Di Natale C, Paolesse R. Chapter 29—Wine and combined electronic nose and tongue. In: Rodríguez-Méndez ML, editor. Electronic noses and tongues in food science. San Diego: Academic Press; 2016. p. 301–7. https://doi.org/10.1016/B978-0-12-800243-8.00029-9.

    Chapter  Google Scholar 

  19. Brereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away. J Chemometrics. 2014;28(4):213–25. https://doi.org/10.1002/cem.2609.

    Article  Google Scholar 

  20. Brezmes J, Ferreras B, Llobet E, Vilanova X, Correig X. Neural network based electronic nose for the classification of aromatic species. Anal Chim Acta. 1997;348(1):503–9. https://doi.org/10.1016/S0003-2670(97)00202-X.

    Article  Google Scholar 

  21. Brudzewski K, Osowski S, Dwulit A. Recognition of coffee using differential electronic nose. IEEE Trans Instrum Meas. 2012;61(6):1803–10. https://doi.org/10.1109/TIM.2012.2184011.

    Article  Google Scholar 

  22. Buratti S, Benedetti S. Chapter 28—Alcoholic fermentation using electronic nose and electronic tongue. In: Rodríguez-Méndez ML, editor. Electronic noses and tongues in food science. San Diego: Academic Press; 2016. p. 291–9. https://doi.org/10.1016/B978-0-12-800243-8.00028-7.

    Chapter  Google Scholar 

  23. Capone S, Epifani M, Quaranta F, Siciliano P, Taurino A, Vasanelli L. Monitoring of rancidity of milk by means of an electronic nose and a dynamic PCA analysis. Sens Actuat B Chem. 2001;78(1):174–9. https://doi.org/10.1016/S0925-4005(01)00809-7. (Selected Papers from Eurosensors XIV).

    Article  Google Scholar 

  24. Capone S, Siciliano P, Quaranta F, Rella R, Epifani M, Vasanelli L. Analysis of vapours and foods by means of an electronic nose based on a sol-gel metal oxide sensors array. Sens Actuat B: Chem. 2000;69(3):230–5. https://doi.org/10.1016/S0925-4005(00)00496-2. (Proceedings of the International Symposium on Electronic Noses).

    Article  Google Scholar 

  25. Cerrato Oliveros MC, Pérez Pavón JL, Garcia Pinto C, Fernández Laespada ME, Moreno Cordero B, Forina M. Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Anal Chim Acta. 2002;459(2):219–28. https://doi.org/10.1016/S0003-2670(02)00119-8.

    Article  Google Scholar 

  26. Cevoli C, Cerretani L, Gori A, Caboni M, Gallina Toschi T, Fabbri A. Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC-MS analysis of volatile compounds. Food Chem. 2011;129(3):1315–9. https://doi.org/10.1016/j.foodchem.2011.05.126.

    Article  Google Scholar 

  27. Concina I, Falasconi M, Gobbi E, Bianchi F, Musci M, Mattarozzi M, Sberveglieri G. Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control. 2009;20(10):873–80. https://doi.org/10.1016/j.foodcont.2008.11.006.

    Article  Google Scholar 

  28. Deepanshi. Beginners guide to artificial neural network. (2021). https://www.analyticsvidhya.com/blog/2021/05/beginners-guide-to-artificial-neural-network. Published On May 25, 2021, Last Modified On May 31, 2021 and Accessed 3 Nov 2022.

  29. Di Natale C, Macagnano A, Martinelli E, Paolesse R, Proietti E, D’Amico A. The evaluation of quality of post-harvest oranges and apples by means of an electronic nose. Sens Actuat B: Chem. 2001;78(1):26–31. https://doi.org/10.1016/S0925-4005(01)00787-0. (Selected Papers from Eurosensors XIV).

    Article  Google Scholar 

  30. Distante C, Siciliano P, Vasanelli L. Odor discrimination using adaptive resonance theory. Sens Actuat B: Chem. 2000;69(3):248–52. https://doi.org/10.1016/S0925-4005(00)00502-5. (Proceedings of the International Symposium on Electronic Noses).

    Article  Google Scholar 

  31. Dutta R, Hines E, Gardner J, Kashwan K, Bhuyan M. Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens Actuat B: Chem. 2003;94(2):228–37. https://doi.org/10.1016/S0925-4005(03)00367-8.

    Article  Google Scholar 

  32. Dutta R, Kashwan K, Bhuyan M, Hines E, Gardner J. Electronic nose based tea quality standardization. Neural Netw. 2003;16(5):847–53. https://doi.org/10.1016/S0893-6080(03)00092-3. (Advances in Neural Networks Research: IJCNN '03).

    Article  Google Scholar 

  33. Eriksson A, Persson Waller K, Svennersten-Sjaunja K, Haugen J-E, Lundby F, Lind O. Detection of mastitic milk using a gas-sensor array system (electronic nose). Int Dairy J. 2005;15(12):1193–201. https://doi.org/10.1016/j.idairyj.2004.12.012.

    Article  Google Scholar 

  34. Falasconi M, Pardo M, Sberveglieri G, Riccó I, Bresciani A. The novel EOS835 electronic nose and data analysis for evaluating coffee ripening. Sens Actuat B: Chem. 2005;110(1):73–80. https://doi.org/10.1016/j.snb.2005.01.019.

    Article  Google Scholar 

  35. FAO, Fida, OMS, Pam, UNICEF. L’État de la sécurité alimentaire et de la nutrition dans le monde,. Réorienter les politiques alimentaires et agricoles pour rendre l’alimentation saine plus abordable (Rome 2022). https://doi.org/10.4060/cc0639fr.

  36. Frades I, Matthiesen R. Overview on techniques in cluster analysis. Bioinform Methods in Clin Res. 2010. https://doi.org/10.1007/978-1-60327-194-3_5.

    Article  Google Scholar 

  37. Fu J, Huang C, Xing J, Zheng J. Pattern classification using an olfactory model with PCA feature selection in electronic noses: study and application. Sensors. 2012;12(3):2818–30. https://doi.org/10.3390/s120302818.

    Article  Google Scholar 

  38. Gómez AH, Hu G, Wang J, Pereira AG. Evaluation of tomato maturity by electronic nose. Comput Electron Agric. 2006;54(1):44–52. https://doi.org/10.1016/j.compag.2006.07.002.

    Article  Google Scholar 

  39. Gómez AH, Wang J, Hu G, Pereira AG. Monitoring storage shelf life of tomato using electronic nose technique. J Food Eng. 2008;85(4):625–31. https://doi.org/10.1016/j.jfoodeng.2007.06.039.

    Article  Google Scholar 

  40. Gorji-Chakespari A, Nikbakht AM, Sefidkon F, Ghasemi-Varnamkhasti M, Brezmes J, Llobet E. Performance comparison of fuzzy artmap and lda in qualitative classification of Iranian Rosa damascena essential oils by an electronic nose. Sensors. 2016. https://doi.org/10.3390/s16050636.

    Article  Google Scholar 

  41. Guo G, Wang H, Bell D, Bi Y, Greer K. KNN model-based approach in classification. In: Meersman R, Tari Z, Schmidt DC, editors. On the move to meaningful internet systems 2003: Coopis, doa, and odbase. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2003. p. 986–96. https://doi.org/10.1007/978-3-540-39964-3_62.

    Chapter  Google Scholar 

  42. Harper W, Sohn S, Da Jou K. The role of fatty acids in the aroma profiles of Swiss cheese as determined by an electronic nose. Olfaction and electronic nose, 3rd international symposium, Toulouse. 1996.

  43. Harrison O. Machine learning basics with the K-Nearest Neighbors Algorithm. (2018). https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761. Published On September 10, 2018 and Accessed 3 Nov 2022.

  44. Hines EL, Boilot P, Gardner JW, Gongora MA. Pattern analysis for electronic noses. In: Handbook of machine olfaction. Wiley; 2002. p. 133–60. https://doi.org/10.1002/3527601597.ch6.

    Chapter  Google Scholar 

  45. Hodgins D. The electronic nose: sensor array-based instruments that emulate the human nose. Techniques for analyzing. CRC Press; 2020. p. 331–71.

    Google Scholar 

  46. Hui G. Chapter 2—apple analysis and the electronic nose. In: Rodríguez-Méndez ML, editor. Electronic noses and tongues in food science. San Diego: Academic Press; 2016. p. 15–9. https://doi.org/10.1016/B978-0-12-800243-8.00002-0.

    Chapter  Google Scholar 

  47. Jakkula V. Tutorial on support vector machine (SVM). School of EECS, Washington State University. 2006;37(2.5):3.

  48. Jana A, Bhattacharyya N, Mukheriee S, Ghosh D, Roy JK, Bandvopadhyay R, Tudu B. Regression model on electronic nose data from aromatic rice samples. In: 2012 sixth international conference on sensing technology (icst) 2012; pp. 418-421. https://doi.org/10.1109/ICSensT.2012.6461712.

  49. Jolliffe IT. Principal component analysis for special types of data. Springer; 2002. https://doi.org/10.1007/b98835.

    Book  MATH  Google Scholar 

  50. Kherif F, Latypova A. Chapter 12–Principal component analysis. In: Mechelli A, Vieira S, editors. Machine learning. Academic Press; 2020. p. 209–25. https://doi.org/10.1016/B978-0-12-815739-8.00012-2.

    Chapter  Google Scholar 

  51. Labreche S, Bazzo S, Cade S, Chanie E. Shelf life determination by electronic nose: application to milk. Sens Actuat B: Chem. 2005;106(1):199–206. https://doi.org/10.1016/j.snb.2004.06.027. (ISOEN 2003—Selected Papers from the 10th International Symposium on Olfaction and Electronic Noses).

    Article  Google Scholar 

  52. Lacoste F, Bosque F, Raoux R. Developments in analytical methods and management is it possible to use an “electronic nose’’ for the detection of sensorial defects in virgin olive oil? Oléagineux, Corps gras, Lipides. 2001;8(1):78–81. https://doi.org/10.1051/ocl.2001.0078.

    Article  Google Scholar 

  53. Laurienzo P, Cammarota G, Di Stasio M, Gentile G, Laurino C, Volpe M. Microstructure and olfactory quality of apples de-hydrated by innovative technologies. J Food Eng. 2013;116(3):689–94. https://doi.org/10.1016/j.jfoodeng.2013.01.002.

    Article  Google Scholar 

  54. Li C, Heinemann P, Sherry R. Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection. Sens Actuat B: Chem. 2007;125(1):301–10. https://doi.org/10.1016/j.snb.2007.02.027.

    Article  Google Scholar 

  55. Li C, Heinemann PH, Irudayaraj J. Detection of apple deterioration using an electronic nose and zNose\(_TM\). Trans Asabe. 2007;50(4):1417–25. https://doi.org/10.13031/2013.23614.

    Article  Google Scholar 

  56. Śliwińska M, Wiśniewska P, Dymerski T, Namieśnik J, Wardencki W. Food analysis using artificial senses. J Agric Food Chem. 2014;62(7):1423–48. https://doi.org/10.1021/jf403215y. (PMID: 24506450).

    Article  Google Scholar 

  57. Lozano J, Santos JP, Suárez JI, Cabellos M, Arroyo T, Horrillo C. Automatic sensor system for the continuous analysis of the evolution of wine. Am J Enol Viticult. 2015;66(2):148–55. https://doi.org/10.5344/ajev.2014.14103.

    Article  Google Scholar 

  58. Magan N, Pavlou A, Chrysanthakis I. Milk-sense: a volatile sensing system recognises spoilage bacteria and yeasts in milk. Sens Actuat B: Chem. 2001;72(1):28–34. https://doi.org/10.1016/S0925-4005(00)00621-3.

    Article  Google Scholar 

  59. Masulli F, Pardo M, Sberveglieri G, Valentini G. Boosting and classification of electronic nose data. In: Roli F, Kittler J, editors. Multiple classifier systems. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2002. p. 262–71. https://doi.org/10.1007/3-540-45428-4_26.

    Chapter  Google Scholar 

  60. McKellar RC, Vasantha Rupasinghe H, Lu X, Knight KP. The electronic nose as a tool for the classification of fruit and grape wines from different Ontario wineries. J Sci Food Agric. 2005;85(14):2391–6. https://doi.org/10.1002/jsfa.2240.

    Article  Google Scholar 

  61. Michishita T, Akiyama M, Hirano Y, Ikeda M, Sagara Y, Araki T. Gas chromatography/olfactometry and electronic nose analyses of retronasal aroma of espresso and correlation with sensory evaluation by an artificial neural network. J Food Sci. 2010;75(9):S477–89. https://doi.org/10.1111/j.1750-3841.2010.01828.x.

    Article  Google Scholar 

  62. Mohd Ali M, Hashim N, Abd Aziz S, Lasekan O. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci Technol. 2020;99:1–10. https://doi.org/10.1016/j.tifs.2020.02.028.

    Article  Google Scholar 

  63. Musatov V, Sysoev V, Sommer M, Kiselev I. Assessment of meat freshness with metal oxide sensor microarray electronic nose: a practical approach. Sens Actuat B: Chem. 2010;144(1):99–103. https://doi.org/10.1016/j.snb.2009.10.040.

    Article  Google Scholar 

  64. Nagle H Jr, Schiffman S. Electronic taste and smell: the case for performance standards. Proc IEEE. 2018;106:1471–8. https://doi.org/10.1109/JPROC.2018.2859678.

    Article  Google Scholar 

  65. Ng KS. A simple explanation of partial least squares. Canberra: The Australian National University; 2013. p. 1–10.

    Google Scholar 

  66. Nobles T. Understanding principle component analysis (pca) step by step. (2020, January). https://medium.com/analytics-vidhya/understanding-principle-component-analysis-pca-step-by-step-e7a4bb4031d9. Accessed 31 Oct 2022.

  67. Pani P, Leva AA, Riva M, Maestrelli A, Torreggiani D. Influence of an osmotic pre-treatment on structure-property relationships of air-dehydrated tomato slices. J Food Eng. 2008;86(1):105–12. https://doi.org/10.1016/j.jfoodeng.2007.09.017.

    Article  Google Scholar 

  68. Pardo M, Niederjaufner G, Benussi G, Comini E, Faglia G, Sberveglieri G, Lundstrom I. Data preprocessing enhances the classification of different brands of espresso coffee with an electronic nose. Sens Actuat B: Chem. 2000;69(3):397–403. https://doi.org/10.1016/S0925-4005(00)00499-8. (Proceedings of the International Symposium on Electronic Noses).

    Article  Google Scholar 

  69. Pathange LP, Mallikarjunan P, Marini RP, O’Keefe S, Vaughan D. Non-destructive evaluation of apple maturity using an electronic nose system. J Food Eng. 2006;77(4):1018–23. https://doi.org/10.1016/j.jfoodeng.2005.08.034.

    Article  Google Scholar 

  70. Pearce TC, Gardner JW, Friel S, Bartlett PN, Blair N. Electronic nose for monitoring the flavour of beers. Analyst. 1993;118:371–7. https://doi.org/10.1039/AN9931800371.

    Article  Google Scholar 

  71. Pearce TC, Schiffman SS, Nagle HT, Gardner JW. Handbook of machine olfaction: electronic nose technology. Wiley; 2006.

    Google Scholar 

  72. Persaud K. Chapter 1—Electronic noses and tongues in the food industry. In: Rodríguez-Méndez ML, editor. Electronic noses and tongues in food science. San Diego: Academic Press; 2016. p. 1–12. https://doi.org/10.1016/B978-0-12-800243-8.00001-9.

    Chapter  Google Scholar 

  73. Piazza L, Gigli J, Benedetti S. Study of structure and flavour release relationships in low moisture bakery products by means of the acoustic-mechanical combined technique and the electronic nose. J Cereal Sci. 2008;48(2):413–9. https://doi.org/10.1016/j.jcs.2007.09.016.

    Article  Google Scholar 

  74. Ponzoni A, Depari A, Falasconi M, Comini E, Flammini A, Marioli D, Sberveglieri G. Bread baking aromas detection by low-cost electronic nose. Sensors and Actuators B: Chemical. 2008;130(1):100–4. https://doi.org/10.1016/j.snb.2007.07.099. (Proceedings of the Eleventh International Meeting on Chemical Sensors IMCS-11).

    Article  Google Scholar 

  75. Ragazzo-Sanchez J, Chalier P, Ghommidh C. Coupling gas chromatography and electronic nose for dehydration and desalcoholization of alcoholized beverages: Application to off-flavour detection in wine. Sens Actuat B: Chem. 2005;106(1):253–7. https://doi.org/10.1016/j.snb.2004.08.006. (ISOEN 2003 - Selected Papers from the 10th International Symposium on Olfaction and Electronic Noses).

    Article  Google Scholar 

  76. Ringnér M. What is principal component analysis? Nat Biotechnol. 2008;26(3):303–4. https://doi.org/10.1038/nbt0308-303.

    Article  Google Scholar 

  77. Rodriguez Gamboa JC, da Silva AJ, Araujo S, Albarracin E, Duran A. Validation of the rapid detection approach for enhancing the electronic nose systems performance, using different deep learning models and support vector machines. Sens Actuat B: Chem. 2021;327: 128921. https://doi.org/10.1016/j.snb.2020.128921.

    Article  Google Scholar 

  78. Rodriguez-Mendez M, Apetrei C, Gay M, Medina-Plaza C, de Saja J, Vidal S, Cheynier V. Evaluation of oxygen exposure levels and polyphenolic content of red wines using an electronic panel formed by an electronic nose and an electronic tongue. Food Chem. 2014;155:91–7. https://doi.org/10.1016/j.foodchem.2014.01.021.

    Article  Google Scholar 

  79. Romani S, Balestra F, Angioloni A, Rocculi P, Dalla Rosa M. Physico-chemical and electronic nose measurements on the study of biscuit baking kinetics. Ital J Food Sci. 2012;24(1):32.

    Google Scholar 

  80. Romani S, Cevoli C, Fabbri A, Alessandrini L, Dalla Rosa M. Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control. J Food Sci. 2012;77(9):C960–5. https://doi.org/10.1111/j.1750-3841.2012.02851.x.

    Article  Google Scholar 

  81. Roy RB, Modak A, Mondal S, Tudu B, Bandyopadhyay R, Bhattacharyya N. Fusion of electronic nose and tongue response using fuzzy based approach for black tea classification. Procedia Technol. 2013;10:615–22. https://doi.org/10.1016/j.protcy.2013.12.402. (First International Conference on Computational Intelligence: Modeling Techniques and Applications (CIMTA) 2013).

    Article  Google Scholar 

  82. Saevels S, Lammertyn J, Berna AZ, Veraverbeke EA, Di Natale C, Nicolaï BM. Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apples. Postharvest Biol Technol. 2003;30(1):3–14. https://doi.org/10.1016/S0925-5214(03)00059-0.

    Article  Google Scholar 

  83. Sanchez G, Marzban E. All models are wrong: concepts of statistical learning. (2020). https://allmodelsarewrong.github.io. Accessed 2 Nov 2022.

  84. Schaller E, Bosset JO, Escher F. ‘Electronic noses’ and their application to food. LWT Food Sci Technol. 1998;31(4):305–16. https://doi.org/10.1006/fstl.1998.0376.

    Article  Google Scholar 

  85. Shafiqul Islam A, Ismail Z, Saad B, Othman A, Ahmad M, Shakaff A. Correlation studies between electronic nose response and headspace volatiles of eurycoma longifolia extracts. Sens Actuat B: Chem. 2006;120(1):245–51. https://doi.org/10.1016/j.snb.2006.02.020.

    Article  Google Scholar 

  86. Sharma J, Bhagawati AJ, Chutia R. Fuzzy logic based odour classification system in electronic nose. Int J Comput Appl 2013;78(15).

  87. Sinesio F, Di Natale C, Quaglia GB, Bucarelli FM, Moneta E, Macagnano A, D’Amico A. Use of electronic nose and trained sensory panel in the evaluation of tomato quality. J Sci Food Agric. 2000;80(1):63–71. https://doi.org/10.1002/(SICI)1097-0010(20000101)80:1<63::AIDJSFA479>3.0.CO;2-8.

    Article  Google Scholar 

  88. Siroli L, Patrignani F, Serrazanetti DI, Tabanelli G, Montanari C, Tappi S, Lanciotti R. Efficacy of natural antimicrobials to prolong the shelf-life of minimally processed apples packaged in modified atmosphere. Food Control. 2014;46:403–11. https://doi.org/10.1016/j.foodcont.2014.05.049.

    Article  Google Scholar 

  89. Tan T, Lucas Q, Moy L, Gardner J. The electronic nose-a new instrument for sensing vapours. LC GC INTERNATIONAL. 1995;8:218.

  90. Tharwat A, Gaber T, Ibrahim A, Hassanien AE. Linear discriminant analysis: a detailed tutorial. AI Commun. 2017;30(2):169–90. https://doi.org/10.3233/AIC-170729.

    Article  MathSciNet  Google Scholar 

  91. Tian X, Wang J, Cui S. Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. J Food Eng. 2013;119(4):744–9. https://doi.org/10.1016/j.jfoodeng.2013.07.004.

    Article  Google Scholar 

  92. Tobias RD, et al. An introduction to partial least squares regression. In: Proceedings of the twentieth annual SAS users group international conference (Vol. 20, pp. 1250–1257) 1995.

  93. Trihaas J, Nielsen PV. Electronic the nose technology in quality assessment: monitoring ripening process of Danish blue cheese. J Food Sci. 2005;70(1):E44–9. https://doi.org/10.1111/j.1365-2621.2005.tb09036.x.

    Article  Google Scholar 

  94. Trihaas J, van den Tempel T, Nielsen PV. Electronic nose technology in quality assessment: predicting volatile composition of Danish blue cheese during ripening. J Food Sci. 2005;70(6):e392–400. https://doi.org/10.1111/j.1365-2621.2005.tb11444.x.

    Article  Google Scholar 

  95. Tudu B, Metla A, Das B, Bhattacharyya N, Jana A, Ghosh D, Bandyopadhyay R. Towards versatile electronic nose pattern classifier for black tea quality evaluation: an incremental fuzzy approach. IEEE Trans Instrum Meas. 2009;58(9):3069–78. https://doi.org/10.1109/TIM.2009.2016874.

    Article  Google Scholar 

  96. Tullett W. 88C4The smell of drugs: medicines, the senses, and efficacy. In: Smell in eighteenth-century England: a social sense. Oxford: Oxford University Press; 2019. https://doi.org/10.1093/oso/9780198844136.003.0004.

    Chapter  Google Scholar 

  97. Tutorialspoint (n.d.). Artificial intelligence—fuzzy logic systems. https://www.tutorialspoint.com/artificial intelligence/artificial_intelligence fuzzy logic systems.htm. Accessed 3 Nov 2022.

  98. Wang B, Xu S, Sun D-W. Application of the electronic nose to the identification of different milk flavorings. Food Res Int. 2010;43:255–62. https://doi.org/10.1016/j.foodres.2009.09.018.

    Article  Google Scholar 

  99. Wang D, Wang X, Liu T, Liu Y. Prediction of total viable counts on chilled pork using an electronic nose combined with support vector machine. Meat Sci. 2012;90(2):373–7. https://doi.org/10.1016/j.meatsci.2011.07.025.

    Article  Google Scholar 

  100. Wei YJ, Yang LL, Liang YP, Li JM. Application of electronic nose for detection of wine-aging methods. In: Material research and applications, vol. 875. Trans Tech Publications Ltd; 2014. p. 2206–13. https://doi.org/10.4028/www.scientific.net/AMR.875-877.2206.

    Chapter  Google Scholar 

  101. Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9(7):5099–148. https://doi.org/10.3390/s90705099.

    Article  Google Scholar 

  102. Wold S, Sjöström M, Eriksson L. Pls-regression: a basic tool of chemometrics. Chemometrics Intell Lab Syst. 2001;58(2):109–30. https://doi.org/10.1016/S0169-7439(01)00155-1. (PLS Methods).

    Article  Google Scholar 

  103. Wu L, Yuan C, Lin A, Zheng B. Identification of early moldy rice samples by PCA and PNN. In: Zhao M, Sha J, editors. Communications and information processing. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2012. p. 506–14. https://doi.org/10.1007/978-3-642-31965-5_59.

    Chapter  Google Scholar 

  104. Xanthopoulos P, Pardalos PM, Trafalis TB. Linear discriminant analysis. In: Robust data mining. New York: Springer, New York; 2013. p. 27–33. https://doi.org/10.1007/978-1-4419-9878-1_4.

    Chapter  MATH  Google Scholar 

  105. Yan C, Lu A. A deep learning method combined with electronic nose to identify the rice origin. J Instrum. 2022;17(08):P08016. https://doi.org/10.1088/1748-0221/17/08/P08016.

    Article  Google Scholar 

  106. Ye J, Wang W, Ho C, Li J, Guo X, Zhao M, Tu P. Differentiation of two types of pu-erh teas by using an electronic nose and ultrasound-assisted extraction-dispersive liquid-liquid microextractiongas chromatography-mass spectrometry. Anal Methods. 2016;8:593–604. https://doi.org/10.1039/C5AY02652K.

    Article  Google Scholar 

  107. Young H, Rossiter K, Wang M, Miller M. Characterization of royal gala apple aroma using electronic nose technology-potential maturity indicator. J Agric Food Chem. 1999;47(12):5173–7. https://doi.org/10.1021/jf990276u.

    Article  Google Scholar 

  108. Yu H, Wang J. Discrimination of LongJing green-tea grade by electronic nose. Sens Actuat B: Chem. 2007;122(1):134–40. https://doi.org/10.1016/j.snb.2006.05.019.

    Article  Google Scholar 

  109. Yu H, Wang J, Zhang H, Yu Y, Yao C. Identification of green tea grade using different feature of response signal from e-nose sensors. Sens Actuat B: Chem. 2008;128(2):455–61. https://doi.org/10.1016/j.snb.2007.07.048.

    Article  Google Scholar 

  110. Zadeh L. Fuzzy sets. Inform Control. 1965;8(3):338–53. https://doi.org/10.1016/S0019-9958(65)90241-X.

    Article  MATH  Google Scholar 

  111. Zhang H, Balaban MO, Principe JC. Improving pattern recognition of electronic nose data with time-delay neural networks. Sens Actuat B: Chem. 2003;96(1):385–9. https://doi.org/10.1016/S0925-4005(03)00574-4.

    Article  Google Scholar 

  112. Zheng X, Lan Y, Zhu J, Westbrook J, Hoffmann W, Lacey R. Rapid identification of rice samples using an electronic nose. J Bionic Eng. 2009;6(3):290–7. https://doi.org/10.1016/S1672-6529(08)60122-5.

    Article  Google Scholar 

  113. Zhou B, Wang J. Use of electronic nose technology for identifying rice infestation by Nilaparvata lugens. Sens Actuat B: Chem. 2011;160(1):15–21. https://doi.org/10.1016/j.snb.2011.07.002.

    Article  Google Scholar 

Download references

Acknowledgements

This publication was made possible through the Digital Science and Technology Network (DSTN) supported by Institut de Recherche pour le Développement (IRD) and Agence Française de Développement (AFD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Affognon.

Ethics declarations

Conflict of Interest

The authors have no conflicting financial or other interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Affognon, L., Diallo, A., Diallo, C. et al. A Survey on Statistical and Machine Learning Algorithms Used in Electronic Noses for Food Quality Assessment. SN COMPUT. SCI. 4, 590 (2023). https://doi.org/10.1007/s42979-023-02052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02052-0

Keywords

Navigation