Skip to main content
Log in

Review of Neural Interfaces: Means for Establishing Brain–Machine Communication

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Neurointerface or Brain–Machine Interface is a system of devices that utilizes the electrical nature of neural signals to establish communication with the nervous system. This literature survey paper tries to provide a brief overview of various methods and devices that helped reach the advancement of neural interfaces of recent times. The work focuses on collating published research in a variety of fields pertaining to neuro-mechanics, neural rehabilitation, study of neuronal activities, and development of Brain–Computer Interfaces. Previous studies have been categorized into segments describing the practices followed for detecting brainwaves, collecting and interpreting neuronal signals, stimulating brain regions for limb control, audio–visual and tactile percepts, and algorithms. Materials and actuators were used to achieve control of Man–Machine Interfaces through modulating neuronal activities. The article also discusses the current inclination toward invasive modalities and the possibility of integrating Artificial Intelligence with non-invasive technologies to move toward a new age of Brain–Computer Interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferrier, D.,: Experiments on the brain of monkeys.—No. .I Proceedings of the Royal Society of London. 23, 409–430 (1875). https://doi.org/10.1098/rspl.1874.0058.

  2. Caton R. The Electric Currents of the Brain. Br Med J. 1875;2:278.

    Google Scholar 

  3. Berger H. Über das Elektrenkephalogramm des Menschen. Archiv f Psychiatrie. 1929;87:527–70. https://doi.org/10.1007/BF01797193.

    Article  Google Scholar 

  4. Zangiabadi N, Ladino LD, Sina F, Orozco-Hernández JP, Carter A, Téllez-Zenteno JF. Deep brain stimulation and drug-resistant epilepsy: a review of the literature. Front Neurol. 2019;10:601. https://doi.org/10.3389/fneur.2019.00601.

    Article  Google Scholar 

  5. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324:354–9. https://doi.org/10.1126/science.1167093.

    Article  Google Scholar 

  6. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H. A spelling device for the paralysed. Nature. 1999;398:297–8. https://doi.org/10.1038/18581.

    Article  Google Scholar 

  7. Panachakel JT, Ramakrishnan AG. Decoding covert speech from EEG-A comprehensive review. Front Neurosci. 2021. https://doi.org/10.3389/fnins.2021.642251.

    Article  Google Scholar 

  8. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet. 2013;381:557–64. https://doi.org/10.1016/S0140-6736(12)61816-9.

    Article  Google Scholar 

  9. Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boninger ML, Collinger JL. Ten-dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations. J Neural Eng. 2015. https://doi.org/10.1088/1741-2560/12/1/016011.

    Article  Google Scholar 

  10. Pelayo, P., Murthy, H., George, K.: Brain-Computer Interface Controlled Robotic Arm to Improve Quality of Life. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI). pp. 398–399. IEEE, New York, NY, (2018). https://doi.org/10.1109/ICHI.2018.00072.

  11. Rosca S-D, Leba M. Using brain-computer-interface for robot arm control. MATEC Web Conf. 2017;121:08006. https://doi.org/10.1051/matecconf/201712108006.

    Article  Google Scholar 

  12. Schuetze SM. The discovery of the action potential. Trends Neurosci. 1983;6:164–8. https://doi.org/10.1016/0166-2236(83)90078-4.

    Article  Google Scholar 

  13. İnce R, Adanır SS, Sevmez F. The inventor of electroencephalography (EEG): Hans berger (1873–1941). Childs Nerv Syst. 2021;37:2723–4. https://doi.org/10.1007/s00381-020-04564-z.

    Article  Google Scholar 

  14. Tudor, M., Tudor Car, L., Tudor, K.: Hans berger (1873–1941) - The history of electroencephalography. Acta medica Croatica : c̆asopis Hravatske akademije medicinskih znanosti. 59, 307–13 (2005).

  15. Abhang, P.A., Gawali, B.W., Mehrotra, S.C.: Technological Basics of EEG Recording and Operation of Apparatus. In: Introduction to EEG- and Speech-Based Emotion Recognition. pp. 19–50. Elsevier (2016). https://doi.org/10.1016/B978-0-12-804490-2.00002-6.

  16. Machado, S., Araújo, F., Paes, F., Velasques, B., Cunha, M., Budde, H., Basile, L.F., Anghinah, R., Arias-Carrión, O., Cagy, M., Piedade, R., de Graaf, T.A., Sack, A.T., Ribeiro, P.: EEG-based Brain-Computer Interfaces: An Overview of Basic Concepts and Clinical Applications in Neurorehabilitation. Reviews in the Neurosciences. https://doi.org/10.1515/REVNEURO.2010.21.6.451.

  17. Kubler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology. 2005;64:1775–7. https://doi.org/10.1212/01.WNL.0000158616.43002.6D.

    Article  Google Scholar 

  18. Zeng H, Shen Y, Hu X, Song A, Xu B, Li H, Wang Y, Wen P. Semi-autonomous robotic arm reaching with hybrid gaze-brain machine interface. Front Neurorobot. 2020;13:111. https://doi.org/10.3389/fnbot.2019.00111.

    Article  Google Scholar 

  19. Zhu D, Bieger J, Garcia Molina G, Aarts RM. A survey of stimulation methods used in SSVEP-based BCIs. Comput Intell Neurosci. 2010;2010:1–12. https://doi.org/10.1155/2010/702357.

    Article  Google Scholar 

  20. Guangyu Bin, Zhonglin Lin, Xiaorong Gao, Bo Hong, Shangkai Gao: The SSVEP topographic scalp maps by Canonical correlation analysis. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 3759–3762. IEEE, Vancouver, BC (2008). https://doi.org/10.1109/IEMBS.2008.4650026.

  21. Wang Y, Wang R, Gao X, Hong Bo, Gao S. A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng. 2006;14:234–40. https://doi.org/10.1109/TNSRE.2006.875576.

    Article  Google Scholar 

  22. Wang Y, Gao X, Hong Bo, Jia C, Gao S. Brain-computer interfaces based on visual evoked potentials. IEEE Eng Med Biol Mag. 2008;27:64–71. https://doi.org/10.1109/MEMB.2008.923958.

    Article  Google Scholar 

  23. Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans Neural Syst Rehabil Eng. 2005;13:172–8. https://doi.org/10.1109/TNSRE.2005.847369.

    Article  Google Scholar 

  24. Mahmood M, Mzurikwao D, Kim Y-S, Lee Y, Mishra S, Herbert R, Duarte A, Ang CS, Yeo W-H. Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat Mach Intell. 2019;1:412–22. https://doi.org/10.1038/s42256-019-0091-7.

    Article  Google Scholar 

  25. Sellers EW, Donchin E. A P300-based brain–computer interface: Initial tests by ALS patients. Clin Neurophysiol. 2006;117:538–48. https://doi.org/10.1016/j.clinph.2005.06.027.

    Article  Google Scholar 

  26. Vidal, J.J.: Real-time detection of brain events in EEG. Proc. IEEE. 65, 633–641 (1977). https://doi.org/10.1109/PROC.1977.10542

  27. Bai X, Li M, Qi S, Ng ACM, Ng T, Qian W. A hybrid P300-SSVEP brain-computer interface speller with a frequency enhanced row and column paradigm. Front Neurosci. 2023;17:1133933. https://doi.org/10.3389/fnins.2023.1133933.

    Article  Google Scholar 

  28. Xiaolin X, Runyuan G, Xiaoyu Z, Weibo Y, Fangzhou X, Kun W, Minpeng X, Dong M. A Novel v-BCI paradigm based on evoked related potentials evoked by weak and small number of stimuli. Front Neurosci. 2023. https://doi.org/10.3389/fnins.2023.1178283.

    Article  Google Scholar 

  29. Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP. Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol. 2004;91:515–32. https://doi.org/10.1152/jn.00587.2002.

    Article  Google Scholar 

  30. Lim H, Ku J. Flickering exercise video produces mirror neuron system (MNS) activation and steady state visually evoked potentials (SSVEPs). Biomed Eng Lett. 2017;7:281–6. https://doi.org/10.1007/s13534-017-0035-2.

    Article  Google Scholar 

  31. Izzetoglu M, Izzetoglu K, Bunce S, Ayaz H, Devaraj A, Onaral B, Pourrezaei K. Functional near-infrared neuroimaging. IEEE Trans Neural Syst Rehabil Eng. 2005;13:153–9. https://doi.org/10.1109/TNSRE.2005.847377.

    Article  Google Scholar 

  32. Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12:1–47. https://doi.org/10.1162/08989290051137585.

    Article  Google Scholar 

  33. Bren KL, Eisenberg R, Gray HB. Discovery of the magnetic behavior of hemoglobin: a beginning of bioinorganic chemistry. Proc Natl Acad Sci USA. 2015;112:13123–7. https://doi.org/10.1073/pnas.1515704112.

    Article  Google Scholar 

  34. Naseer N, Hong K-S. fNIRS-based brain-computer interfaces: a review. Front Hum Neurosci. 2015. https://doi.org/10.3389/fnhum.2015.00003.

    Article  Google Scholar 

  35. Coyle SM, Ward TE, Markham CM. Brain–computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng. 2007;4:219–26. https://doi.org/10.1088/1741-2560/4/3/007.

    Article  Google Scholar 

  36. Naito, M., Michioka, Y., Ozawa, K., Ito, Y., Kiguchi, M., Kanazawa, T.: A Communication Means for Totally Locked-in ALS Patients Based on Changes in Cerebral Blood Volume Measured with Near-Infrared Light. IEICE Transactions on Information and Systems. E90-D, 1028–1037 (2007). https://doi.org/10.1093/ietisy/e90-d.7.1028.

  37. Sitaram R, Zhang H, Guan C, Thulasidas M, Hoshi Y, Ishikawa A, Shimizu K, Birbaumer N. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. Neuroimage. 2007;34:1416–27. https://doi.org/10.1016/j.neuroimage.2006.11.005.

    Article  Google Scholar 

  38. de Almeida, P.M.D., Ferreira Vieira, A.I.C.M. de, Canário, N.I.S., Castelo-Branco, M., de Castro Caldas, A.L.: Brain Activity during Lower-Limb Movement with Manual Facilitation: An fMRI Study. Neurology Research International. 2015, 1–14 (2015). https://doi.org/10.1155/2015/701452

  39. Zhu Y, Xu K, Xu C, Zhang J, Ji J, Zheng X, Zhang H, Tian M. PET Mapping for Brain-Computer Interface Stimulation of the Ventroposterior Medial Nucleus of the Thalamus in Rats with Implanted Electrodes. J Nucl Med. 2016;57:1141–5. https://doi.org/10.2967/jnumed.115.171868.

    Article  Google Scholar 

  40. Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kübler A. An MEG-based brain–computer interface (BCI). Neuroimage. 2007;36:581–93. https://doi.org/10.1016/j.neuroimage.2007.03.019.

    Article  Google Scholar 

  41. Mihajlovic V, Grundlehner B, Vullers R, Penders J. Wearable, wireless EEG Solutions in daily life applications: what are we missing? IEEE J Biomed Health Inform. 2015;19:6–21. https://doi.org/10.1109/JBHI.2014.2328317.

    Article  Google Scholar 

  42. Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B. Review on solving the inverse problem in EEG source analysis. J NeuroEngineering Rehabil. 2008;5:25. https://doi.org/10.1186/1743-0003-5-25.

    Article  Google Scholar 

  43. Parvizi J, Kastner S. Promises and limitations of human intracranial electroencephalography. Nat Neurosci. 2018;21:474–83. https://doi.org/10.1038/s41593-018-0108-2.

    Article  Google Scholar 

  44. Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: a review of audition, memory, internal cognition, and causality. J Neural Eng. 2020. https://doi.org/10.1088/1741-2552/abb7a5.

    Article  Google Scholar 

  45. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485:372–5. https://doi.org/10.1038/nature11076.

    Article  Google Scholar 

  46. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain–computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1:63–71. https://doi.org/10.1088/1741-2560/1/2/001.

    Article  Google Scholar 

  47. Metzger SL, Liu JR, Moses DA, Dougherty ME, Seaton MP, Littlejohn KT, Chartier J, Anumanchipalli GK, Tu-Chan A, Ganguly K, Chang EF. Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis. Nat Commun. 2022;13:6510. https://doi.org/10.1038/s41467-022-33611-3.

    Article  Google Scholar 

  48. Willett F, Kunz E, Fan C, Avansino D, Wilson G, Choi EY, Kamdar F, Hochberg LR, Druckmann S, Shenoy KV, Henderson JM. A high-performance speech neuroprosthesis. Neuroscience. 2023. https://doi.org/10.1101/2023.01.21.524489.

    Article  Google Scholar 

  49. Vansteensel MJ, Pels EGM, Bleichner MG, Branco MP, Denison T, Freudenburg ZV, Gosselaar P, Leinders S, Ottens TH, Van Den Boom MA, Van Rijen PC, Aarnoutse EJ, Ramsey NF. Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS. N Engl J Med. 2016;375:2060–6. https://doi.org/10.1056/NEJMoa1608085.

    Article  Google Scholar 

  50. Handelman DA, Osborn LE, Thomas TM, Badger AR, Thompson M, Nickl RW, Anaya MA, Wormley JM, Cantarero GL, McMullen D, Crone NE, Wester B, Celnik PA, Fifer MS, Tenore FV. Shared control of bimanual robotic limbs with a brain-machine interface for self-feeding. Front Neurorobot. 2022. https://doi.org/10.3389/fnbot.2022.918001.

    Article  Google Scholar 

  51. Simeral JD, Hosman T, Saab J, Flesher SN, Vilela M, Franco B, Kelemen JN, Brandman DM, Ciancibello JG, Rezaii PG, Eskandar EN, Rosler DM, Shenoy KV, Henderson JM, Nurmikko AV, Hochberg LR. Home use of a percutaneous wireless Intracortical brain-computer interface by individuals with Tetraplegia. IEEE Trans Biomed Eng. 2021;68:2313–25. https://doi.org/10.1109/TBME.2021.3069119.

    Article  Google Scholar 

  52. Waldert S. Invasive vs non-invasive neuronal signals for brain-machine interfaces: will one prevail? Front Neurosci. 2016. https://doi.org/10.3389/fnins.2016.00295.

    Article  Google Scholar 

  53. Quian Quiroga R. Plugging in to human memory: advantages, challenges, and insights from human single-neuron recordings. Cell. 2019;179:1015–32. https://doi.org/10.1016/j.cell.2019.10.016.

    Article  Google Scholar 

  54. Konerding WS, Froriep UP, Kral A, Baumhoff P. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Sci Rep. 2018;8:3825. https://doi.org/10.1038/s41598-018-22051-z.

    Article  Google Scholar 

  55. Charvet, G., Foerster, M., Chatalic, G., Michea, A., Porcherot, J., Bonnet, S., Filipe, S., Audebert, P., Robinet, S., Josselin, V., Reverdy, J., D’Errico, R., Sauter, F., Mestais, C., Benabid, A.L.: (2012) A wireless 64-channel ECoG recording Electronic for implantable monitoring and BCI applications: WIMAGINE. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 783–786. IEEE, San Diego, CA https://doi.org/10.1109/EMBC.2012.6346048.

  56. Raspopovic S, Valle G, Petrini FM. Sensory feedback for limb prostheses in amputees. Nat Mater. 2021;20:925–39. https://doi.org/10.1038/s41563-021-00966-9.

    Article  Google Scholar 

  57. Valle G, Saliji A, Fogle E, Cimolato A, Petrini FM, Raspopovic S. Mechanisms of neuro-robotic prosthesis operation in leg amputees. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abd8354.

    Article  Google Scholar 

  58. Boes AD, Kelly MS, Trapp NT, Stern AP, Press DZ, Pascual-Leone A. Noninvasive brain stimulation: challenges and opportunities for a new clinical specialty. JNP. 2018;30:173–9. https://doi.org/10.1176/appi.neuropsych.17110262.

    Article  Google Scholar 

  59. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527:633–9. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.

    Article  Google Scholar 

  60. Herrmann CS, Rach S, Neuling T, Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013. https://doi.org/10.3389/fnhum.2013.00279.

    Article  Google Scholar 

  61. Hess CW, Mills KR, Murray NM. Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol. 1987;388:397–419. https://doi.org/10.1113/jphysiol.1987.sp016621.

    Article  Google Scholar 

  62. Penton T, Dixon L, Evans LJ, Banissy MJ. Emotion perception improvement following high frequency transcranial random noise stimulation of the inferior frontal cortex. Sci Rep. 2017;7:11278. https://doi.org/10.1038/s41598-017-11578-2.

    Article  Google Scholar 

  63. Moret B, Donato R, Nucci M, Cona G, Campana G. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Sci Rep. 2019;9:15150. https://doi.org/10.1038/s41598-019-51553-7.

    Article  Google Scholar 

  64. Hammond DC. Neurofeedback treatment of depression and anxiety. J Adult Dev. 2005;12:131–7. https://doi.org/10.1007/s10804-005-7029-5.

    Article  Google Scholar 

  65. Lubar, J.F., Swartwood, M.O., Swartwood, J.N., O’Donnell, P.H.: Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance. Biofeedback and Self-Regulation. (1995). https://doi.org/10.1007/BF01712768.

  66. Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B. The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol. 2009;215:20–8. https://doi.org/10.1016/j.expneurol.2008.09.008.

    Article  Google Scholar 

  67. Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM. Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol. 2006;197:244–51. https://doi.org/10.1016/j.expneurol.2005.09.016.

    Article  Google Scholar 

  68. Morrell MJ. On behalf of the RNS system in epilepsy study group: responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77:1295–304. https://doi.org/10.1212/WNL.0b013e3182302056.

    Article  Google Scholar 

  69. O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL. Active tactile exploration using a brain–machine–brain interface. Nature. 2011;479:228–31. https://doi.org/10.1038/nature10489.

    Article  Google Scholar 

  70. Klaes C, Shi Y, Kellis S, Minxha J, Revechkis B, Andersen RA. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J Neural Eng. 2014. https://doi.org/10.1088/1741-2560/11/5/056024.

    Article  Google Scholar 

  71. Heiduschka P, Thanos S. Implantable bioelectronic interfaces for lost nerve functions. Prog Neurobiol. 1998;55:433–61. https://doi.org/10.1016/S0301-0082(98)00013-6.

    Article  Google Scholar 

  72. Boulet J, White M, Bruce IC. Temporal considerations for stimulating spiral ganglion neurons with cochlear implants. JARO. 2016;17:1–17. https://doi.org/10.1007/s10162-015-0545-5.

    Article  Google Scholar 

  73. Wong K, Kozin ED, Kanumuri VV, Vachicouras N, Miller J, Lacour S, Brown MC, Lee DJ. Auditory brainstem implants: recent progress and future perspectives. Front Neurosci. 2019;13:10. https://doi.org/10.3389/fnins.2019.00010.

    Article  Google Scholar 

  74. Fernandez E. Development of visual Neuroprostheses: trends and challenges. Bioelectron Med. 2018;4:12. https://doi.org/10.1186/s42234-018-0013-8.

    Article  Google Scholar 

  75. Normann RA, Maynard EM, Guillory KS, Warren DJ. Cortical implants for the blind. IEEE Spectr. 1996;33:54–9. https://doi.org/10.1109/6.490057.

    Article  Google Scholar 

  76. Normann RA, Fernandez E. Clinical applications of penetrating neural interfaces and Utah electrode array technologies. J Neural Eng. 2016. https://doi.org/10.1088/1741-2560/13/6/061003.

    Article  Google Scholar 

  77. Legge GE, Chung STL. Low vision and plasticity: implications for rehabilitation. Annu Rev Vis Sci. 2016;2:321–43. https://doi.org/10.1146/annurev-vision-111815-114344.

    Article  Google Scholar 

  78. Fernández E, Pelayo F, Romero S, Bongard M, Marin C, Alfaro A, Merabet L. Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng. 2005;2:R1–12. https://doi.org/10.1088/1741-2560/2/4/R01.

    Article  Google Scholar 

  79. Vurro M, Crowell AM, Pezaris JS. Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans. Front Hum Neurosci. 2014. https://doi.org/10.3389/fnhum.2014.00816.

    Article  Google Scholar 

  80. Normann RA, Greger BA, House P, Romero SF, Pelayo F, Fernandez E. Toward the development of a cortically based visual neuroprosthesis. J Neural Eng. 2009. https://doi.org/10.1088/1741-2560/6/3/035001.

    Article  Google Scholar 

  81. Cha K, Horch K, Normann RA. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann Biomed Eng. 1992;20:439–49. https://doi.org/10.1007/BF02368135.

    Article  Google Scholar 

  82. Dagnelie G, Keane P, Narla V, Yang L, Weiland J, Humayun M. Real and virtual mobility performance in simulated prosthetic vision. J Neural Eng. 2007;4:S92–101. https://doi.org/10.1088/1741-2560/4/1/S11.

    Article  Google Scholar 

  83. Piedade M, Gerald J, Sousa LA, Tavares G, Tomas P. Visual neuroprosthesis: a non invasive system for stimulating the cortex. IEEE Trans Circuits Syst. 2005;I(52):2648–62. https://doi.org/10.1109/TCSI.2005.857923.

    Article  Google Scholar 

  84. Fernandez E, Soto C, Alfaro A, Gonzalez P, Lozano A, Peña S, Grima MD, Rodil A, Alarcon A, Rolston J, Davies T, Normann RA. Development of a cortical visual neuroprosthesis for the blind: preliminary results. Invest Ophthalmol Vis Sci. 2019;60:4021–4021.

    Google Scholar 

  85. Suaning, G.J., AU, Lovell, N.H., AU, Kerdraon, Y.K., AU: United States Patent: 7003355 - Vision prosthesis for the blind and method for implementing same, https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7003355.PN.&OS=PN/7003355&RS=PN/7003355, (2006).

  86. de Ruyter van Steveninck, J., van Gestel, T., Koenders, P., van der Ham, G., Vereecken, F., Güçlü, U., van Gerven, M., Güçlütürk, Y., van Wezel, R.: (2022) Real-world indoor mobility with simulated prosthetic vision: The benefits and feasibility of contour-based scene simplification at different phosphene resolutions. Journal of Vision. https://doi.org/10.1167/jov.22.2.1.

  87. S., R., Valle, M.: (2008) Tactile Sensing for Robotic Applications. In: Gerardo, J. and Lanceros-Mendez, S. (eds.) Sensors: Focus on Tactile Force and Stress Sensors. InTech https://doi.org/10.5772/6627.

  88. Ying M, Bonifas AP, Lu N, Su Y, Li R, Cheng H, Ameen A, Huang Y, Rogers JA. Silicon nanomembranes for fingertip electronics. Nanotechnology. 2012. https://doi.org/10.1088/0957-4484/23/34/344004.

    Article  Google Scholar 

  89. Jung S, Kim JH, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim D-H. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv Mater. 2014;26:4825–30. https://doi.org/10.1002/adma.201401364.

    Article  Google Scholar 

  90. Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S-T, Kim JH, Choi SH, Hyeon T, Kim D-H. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun. 2014;5:5747. https://doi.org/10.1038/ncomms6747.

    Article  Google Scholar 

  91. Collu R, Earley EJ, Barbaro M, Ortiz-Catalan M. Non-rectangular neurostimulation waveforms elicit varied sensation quality and perceptive fields on the hand. Sci Rep. 2023;13:1588. https://doi.org/10.1038/s41598-023-28594-0.

    Article  Google Scholar 

  92. Veneman JF, Ekkelenkamp R, Kruidhof R, van der Helm FCT, van der Kooij H. A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. The Int J Robotics Res. 2006;25:261–81. https://doi.org/10.1177/0278364906063829.

    Article  Google Scholar 

  93. Rosen J, Perry JC. Upper limb powered exoskeleton. Int J Human Robot. 2007;04:529–48. https://doi.org/10.1142/S021984360700114X.

    Article  Google Scholar 

  94. Yoon Sang Kim, Sooyong Lee, Changhyun Cho, Munsang Kim, Chong-Won Lee: A new exoskeleton-type masterarm with force reflection based on the torque sensor beam. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164). pp. 2628–2633. IEEE, Seoul, South Korea (2001). https://doi.org/10.1109/ROBOT.2001.933019.

  95. Bergamasco, M., Frisoli, A., Avizzano, C.A.: Exoskeletons as Man-Machine Interface Systems for Teleoperation and Interaction in Virtual Environments. In: Ferre, M., Buss, M., Aracil, R., Melchiorri, C., and Balaguer, C. (eds.) Advances in Telerobotics. pp. 61–76. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71364-7_5.

  96. Frisoli, A., Rocchi, F., Marcheschi, S., Dettori, A., Salsedo, F., Bergamasco, M.: A New Force-Feedback Arm Exoskeleton for Haptic Interaction in Virtual Environments. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. pp. 195–201. IEEE, Pisa, Italy (2005). https://doi.org/10.1109/WHC.2005.15.

  97. Avizzano, C.A., Bargagli, F., Frisoli, A., Bergamasco, M.: The hand force feedback: analysis and control of a haptic device for the human-hand. In: SMC 2000 Conference Proceedings. 2000 IEEE International Conference on Systems, Man and Cybernetics. “Cybernetics Evolving to Systems, Humans, Organizations, and their Complex Interactions” (Cat. No.00CH37166). pp. 989–994. IEEE, Nashville, TN, USA (2000). https://doi.org/10.1109/ICSMC.2000.885979.

  98. Grimm F, Gharabaghi A. Closed-Loop Neuroprosthesis for reach-to-grasp assistance: combining adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Front Neurosci. 2016. https://doi.org/10.3389/fnins.2016.00284.

    Article  Google Scholar 

  99. Alibeji NA, Molazadeh V, Dicianno BE, Sharma N. A control scheme that uses dynamic postural synergies to coordinate a hybrid walking neuroprosthesis: theory and experiments. Front Neurosci. 2018;12:159. https://doi.org/10.3389/fnins.2018.00159.

    Article  Google Scholar 

  100. Weiner P, Starke J, Rader S, Hundhausen F, Asfour T. designing prosthetic hands with embodied intelligence: the KIT prosthetic hands. Front Neurorobot. 2022. https://doi.org/10.3389/fnbot.2022.815716.

    Article  Google Scholar 

  101. Folgheraiter M, de Gea J, Bongardt B, Albiez J, Kirchner F. Bio-inspired control of an arm exoskeleton joint with active-compliant actuation system. Applied Bionics and Biomechanics. 2009;6:193–204. https://doi.org/10.1080/11762320902840187.

    Article  Google Scholar 

  102. Makinson, B.J.: (1971) Research and development prototype for machine augmentation of human strength and endurance. hardiman i project. general electric co schenectady Ny specialty materials handling products operation

  103. Hong, Y.W., King, Y.-J., Yeo, W.-H., Ting, C.-H., Chuah, Y.-D., Lee, J.-V., Chok, E.-T.: (2013). Lower Extremity Exoskeleton: Review and Challenges Surrounding the Technology and its Role in Rehabilitation of Lower Limbs. 5

  104. Kazerooni, H.: Exoskeletons for Human Performance Augmentation. In: Siciliano, B. and Khatib, O. (eds.) Springer Handbook of Robotics. pp. 773–793. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_34.

  105. Zoss AB, Kazerooni H, Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron. 2006;11:128–38. https://doi.org/10.1109/TMECH.2006.871087.

    Article  Google Scholar 

  106. Dollar AM, Herr H. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Robot. 2008;24:144–58. https://doi.org/10.1109/TRO.2008.915453.

    Article  Google Scholar 

  107. Singla, A., Dhand, S., Virk, G.: (2016)A Brief Review on Human-Powered Lower-Limb Exoskeletons.

  108. Sooyong Lee, Sangmin Park, Munsang Kim, Chong-Won Lee: (1998) Design of a force reflecting master arm and master hand using pneumatic actuators. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146). pp. 2574–2579. IEEE, Leuven, Belgium https://doi.org/10.1109/ROBOT.1998.680729.

  109. Tsagarakis NG, Caldwell DG. Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Auton Robot. 2003;15:21–33. https://doi.org/10.1023/A:1024484615192.

    Article  Google Scholar 

  110. Gu, G., Zhang, N., Xu, H., Lin, S., Yu, Y., Chai, G., Ge, L., Yang, H., Shao, Q., Sheng, X., Zhu, X., Zhao, X.: (2020) Lightweight soft neuroprosthetic hand. In Review. https://doi.org/10.21203/rs.3.rs-47149/v1.

  111. Singla, A., Dhand, S., Dhawad, A., Virk, G.S.: (2019) Toward Human-Powered Lower Limb Exoskeletons: A Review. In: Yadav, N., Yadav, A., Bansal, J.C., Deep, K., and Kim, J.H. (eds.) Harmony Search and Nature Inspired Optimization Algorithms. pp. 783–795. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-13-0761-4_75.

  112. Kelly, A., Ballerini, L., Lowery, M., Biggs, M.: 7.32 Engineering the Neural Interface. In: Comprehensive Biomaterials II. pp. 642–660. Elsevier (2017). https://doi.org/10.1016/B978-0-12-803581-8.09322-X.

  113. Patil AC, Thakor NV. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording. Med Biol Eng Comput. 2016;54:23–44. https://doi.org/10.1007/s11517-015-1430-4.

    Article  Google Scholar 

  114. Woeppel K, Yang Q, Cui XT. Recent advances in neural electrode–tissue interfaces. Current Opinion Biomed Eng. 2017;4:21–31. https://doi.org/10.1016/j.cobme.2017.09.003.

    Article  Google Scholar 

  115. Ware T, Simon D, Hearon K, Liu C, Shah S, Reeder J, Khodaparast N, Kilgard MP, Maitland DJ, Rennaker RL, Voit WE. Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces. Macromol Mater Eng. 2012;297:1193–202. https://doi.org/10.1002/mame.201200241.

    Article  Google Scholar 

  116. Guo Z, Wang F, Wang L, Tu K, Jiang C, Xi Y, Hong W, Xu Q, Wang X, Yang B, Sun B, Lin Z, Liu J. A flexible neural implant with ultrathin substrate for low-invasive brain–computer interface applications. Microsyst Nanoeng. 2022;8:133. https://doi.org/10.1038/s41378-022-00464-1.

    Article  Google Scholar 

  117. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nature Nanotech. 2008;3:434–9. https://doi.org/10.1038/nnano.2008.174.

    Article  Google Scholar 

  118. Khraiche, M.L., Jackson, N., Muthuswamy, J.: Early onset of electrical activity in developing neurons cultured on carbon nanotube immobilized microelectrodes. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 777–780. IEEE, Minneapolis, MN (2009). https://doi.org/10.1109/IEMBS.2009.5333590.

  119. Lu Y, Li T, Zhao X, Li M, Cao Y, Yang H, Duan YY. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Biomaterials. 2010;31:5169–81. https://doi.org/10.1016/j.biomaterials.2010.03.022.

    Article  Google Scholar 

  120. Pan C-T, Chang C-C, Yang Y-S, Yen C-K, Kao Y-H, Shiue Y-L. Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sensors Actuators A: Phys. 2020. https://doi.org/10.1016/j.sna.2019.111708.

    Article  Google Scholar 

  121. Qing Q, Jiang Z, Xu L, Gao R, Mai L, Lieber CM. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nature Nanotech. 2014;9:142–7. https://doi.org/10.1038/nnano.2013.273.

    Article  Google Scholar 

  122. Seo, D., Carmena, J.M., Rabaey, J.M., Alon, E., Maharbiz, M.M.: (2013) Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain-Machine Interfaces). https://doi.org/10.48550/ARXIV.1307.2196.

  123. Strickland, E.: 4 Steps to Turn “Neural Dust” Into a Medical Reality, https://spectrum.ieee.org/4-steps-to-turn-neural-dust-into-a-medical-reality, last accessed 2022/06/13.

  124. Schaeffer M-C, Aksenova T. Data-Driven transducer design and identification for internally-paced motor brain computer interfaces: a review. Front Neurosci. 2018;12:540. https://doi.org/10.3389/fnins.2018.00540.

    Article  Google Scholar 

  125. Sweeney KT, Ward TE, McLoone SF. Artifact removal in physiological signals—practices and possibilities. IEEE Trans Inform Technol Biomed. 2012;16:488–500. https://doi.org/10.1109/TITB.2012.2188536.

    Article  Google Scholar 

  126. Ilyas, M.Z., Saad, P., Ahmad, M.I.: A survey of analysis and classification of EEG signals for brain-computer interfaces. In: 2015 2nd International Conference on Biomedical Engineering (ICoBE). IEEE, Penang, Malaysia (2015). https://doi.org/10.1109/ICoBE.2015.7235129.

  127. Gaur P, Pachori RB, Wang H, Prasad G. A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst Appl. 2018;95:201–11. https://doi.org/10.1016/j.eswa.2017.11.007.

    Article  Google Scholar 

  128. Rashid, M., Sulaiman, N., P. P. Abdul Majeed, A., Musa, R.M., Ab. Nasir, A.F., Bari, B.S., Khatun, S.: (2020) Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Front. Neurorobot. https://doi.org/10.3389/fnbot.2020.00025.

  129. Bashashati H, Ward RK, Birch GE, Bashashati A. Comparing different classifiers in sensory motor brain computer interfaces. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0129435.

    Article  Google Scholar 

  130. Schlögl A, Lee F, Bischof H, Pfurtscheller G. Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng. 2005;2:L14–22. https://doi.org/10.1088/1741-2560/2/4/L02.

    Article  Google Scholar 

  131. Bhattacharyya, S., Khasnobish, A., Konar, A., Tibarewala, D.N., Nagar, A.K.: Performance analysis of left/right hand movement classification from EEG signal by intelligent algorithms. In: 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB). pp. 1–8. IEEE, Paris, France (2011). https://doi.org/10.1109/CCMB.2011.5952111.

  132. Ng, A., Jordan, M.: (2001) On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes. In: Dietterich, T., Becker, S., and Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems. MIT Press.

  133. Hortal E, Planelles D, Costa A, Iáñez E, Úbeda A, Azorín JM, Fernández E. SVM-based Brain-Machine Interface for controlling a robot arm through four mental tasks. Neurocomputing. 2015;151:116–21. https://doi.org/10.1016/j.neucom.2014.09.078.

    Article  Google Scholar 

  134. Kim KH, Kim SS, Kim SJ. Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study. J Neurosci Methods. 2006;150:202–11. https://doi.org/10.1016/j.jneumeth.2005.06.015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PKK and PVM researched data for the article and wrote the document. All the authors contributed substantially toward reviewing and editing the manuscript.

Corresponding author

Correspondence to Preetam Kumar Khuntia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khuntia, P.K., Manivannan, P.V. Review of Neural Interfaces: Means for Establishing Brain–Machine Communication. SN COMPUT. SCI. 4, 672 (2023). https://doi.org/10.1007/s42979-023-02160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02160-x

Keywords

Navigation