Skip to main content
Log in

Performance Evaluation of IoST–Mist–Fog–Cloud Framework for Geospatial Crime Data Visualization: A State Dependent Queueing Approach

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Modern Information and Communication Technology, Internet of Spatial Things(IoT), cloud, fog, and mist computing enable an expansion of real-time geospatial applications in crime analysis. Due to their sensitivity to latency and QoS, these applications must process at the network’s edge, not on the central cloud servers. Mist nodes have the ability to cache low-volume geographical data that is regularly requested and then process that data using lightweight applications. Display the results of the geospatial data processing on the client’s devices or systems in accordance with their requirements.Computing in the mist and fog have been the focus of a significant amount of study recently, particularly in geospatial application contexts such as crime analysis and visualization. Real-time geospatial crime data visualization can be more efficient and productive through the mist computing framework. By keeping this in mind, the present research paper proposes the IoST-Mist–Fog–Cloud framework for the visualization of crime data. With the help of this proposed framework, it visualizes the geospatial crime data through the thin client and mobile client environment. In addition to this, it provides a one-of-a-kind analytical model that investigates a state-dependent service queuing strategy using the IoST–Mist–Fog–Cloud framework and the influence of state-dependent service time on the system’s overall performance. It explains some of the system’s characteristics, and numerical evaluations and simulations validate the system’s functionality. According to the evaluation’s findings, it can attain an adequate degree of precision and successfully offload tasks when it uses the framework presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barik RK, Dubey H, Samaddar AB, Gupta RD, Ray PK. Foggis: Fog computing for geospatial big data analytics. In: 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), IEEE; 2016. pp. 613–618.

  2. Mas L, Vilaplana J, Mateo J, Solsona F. A queuing theory model for fog computing. J Supercomput. 2022;78(8):11138–55.

    Article  Google Scholar 

  3. Barik RK, Dubey H, Mankodiya K, Sasane SA, Misra C. Geofog4health: a fog-based sdi framework for geospatial health big data analysis. J Ambient Intellig Hum Comput. 2019;10(2):551–67.

    Article  Google Scholar 

  4. Goswami V, Panda G. Multimedia content delivery services in the cloud with partial sleep and abandonment. J. Supercomput 2022;1–24

  5. Shahid H, Shah MA, Almogren A, Khattak HA, Din IU, Kumar N, Maple C. Machine learning-based mist computing enabled internet of battlefield things. ACM Trans Internet Technol (TOIT). 2021;21(4):1–26.

    Article  Google Scholar 

  6. Barik RK, Misra C, Lenka RK, Dubey H, Mankodiya K. Hybrid mist-cloud systems for large scale geospatial big data analytics and processing: opportunities and challenges. Arabian J Geosci. 2019;12(2):1–15.

    Article  Google Scholar 

  7. Bekker R. Validating state-dependent queues in health care. Queueing Syst. 2022;100(3):505–7.

    Article  MathSciNet  Google Scholar 

  8. Lumb VR, Rani I. Analytically simple solution to discrete-time queue with catastrophes, balking and state-dependent service. Int J Syst Assur Eng Manag. 2022;13(2):783–817.

    Article  Google Scholar 

  9. Gupta V, Zhang J. Approximations and optimal control for state-dependent limited processor sharing queues. Stochastic Syst. 2022;12(2):205–25.

    Article  MathSciNet  MATH  Google Scholar 

  10. Nanda S, Goswami V, Brahma AN, Patra SS, Barik RK. Towards efficient and dynamic allocations of mist nodes for iost devices. In: 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), IEEE; 2022. pp. 1–5.

  11. Das J, Ghosh SK, Buyya R. Geospatial edge-fog computing: a systematic review, taxonomy, and future directions. Mobile Edge Comput 2021; 47–69

  12. Prathap BR. Geospatial crime analysis and forecasting with machine learning techniques. In: Artificial Intelligence and Machine Learning for EDGE Computing, Elsevier; 2022. pp. 87–102.

  13. Singh H, Kumar R, Singh A, Litoria P. Cloud gis for crime mapping. Int J Res Comput Sci. 2012;2(3):57–60.

    Article  Google Scholar 

  14. El Kafhali S, Salah K. Efficient and dynamic scaling of fog nodes for iot devices. J Supercomput. 2017;73(12):5261–84.

    Article  Google Scholar 

  15. Barik RK, Dubey AC, Tripathi A, Pratik T, Sasane S, Lenka RK, Dubey H, Mankodiya K, Kumar V. Mist data: leveraging mist computing for secure and scalable architecture for smart and connected health. Procedia Comput Sci. 2018;125:647–53.

    Article  Google Scholar 

  16. Ketu S, Mishra PK. Cloud, fog and mist computing in iot: an indication of emerging opportunities. IETE Techn. Rev. 2021; 1–12

  17. Galambos P. Cloud, fog, and mist computing: advanced robot applications. IEEE Syst Man Cybernet Magaz. 2020;6(1):41–5.

    Article  MathSciNet  Google Scholar 

  18. Santos RB. Crime analysis with crime mapping. Sage Publications 2016.

  19. Panigrahi SK, Jena JR, Goswami V, Patra SS, Samaddar SG, Barik RK. Performance evaluation of state dependent queueing based geospatial mist-assisted cloud system for crime data visualisation. In: 2022 3rd International Conference on Computing, Analytics and Networks (ICAN), IEEE; 2022. pp. 1–6.

  20. Rodrigues L, Rodrigues JJ, Serra AdB, Silva FA. A queueing-based model performance evaluation for internet of people supported by fog computing. Future Internet. 2022;14(1):23.

    Article  Google Scholar 

  21. El Kafhali S, Salah K, Alla SB. Performance evaluation of iot-fog-cloud deployment for healthcare services. In: 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech), IEEE, 2018. pp. 1–6.

  22. Baughman CJ. An introduction to GIS. In: The Crime Analyst’s Companion, Springer; 2022. pp. 105–124.

  23. Jubit N, Masron T. Gis for crime mapping: a case study of property crime in Kuching, Sarawak. J Asian Geography. 2022;1(1):25–33.

    Google Scholar 

  24. Ristea A, Leitner M. Urban crime mapping and analysis using GIS. ISPRS Int J Geo-Inform. 2020;9(9):511.

    Article  Google Scholar 

  25. Liu L. Progresses and challenges of crime geography and crime analysis. In: New Thinking in GIScience, Springer; 2022. pp. 349–353.

  26. Cheah JY, Smith JM. Generalized \({M/G/c/c}\) state dependent queueing models and pedestrian traffic flows. Queueing Syst. 1994;15:365–86.

    Article  MATH  Google Scholar 

  27. Jain R, Smith JM. Modeling vehicular traffic flow using \({M/G/c/c}\) state dependent queueing models. Transport Sci. 1997;31(4):324–36.

    Article  MATH  Google Scholar 

  28. Cruz FR, Smith JM. Approximate analysis of M/G/c/c state-dependent queueing networks. Comput Oper Res. 2007;34(8):2332–44.

    Article  MathSciNet  MATH  Google Scholar 

  29. Abouee-Mehrizi H, Baron O. State-dependent M/G/1 queueing systems. Queueing Syst. 2016;82(1–2):121–48.

    Article  MathSciNet  MATH  Google Scholar 

  30. Hejazi T-H. State-dependent resource reallocation plan for health care systems: a simulation optimization approach. Comput Indust Eng. 2021;159: 107502.

    Article  Google Scholar 

  31. Nithya M, Joshi GP, Sugapriya C, Selvakumar S, Anbazhagan N, Yang E, Doo IC. Analysis of stochastic state-dependent arrivals in a queueing-inventory system with multiple server vacation and retrial facility. Mathematics. 2022;10(17):3041.

    Article  Google Scholar 

  32. Yuhaski SJ, Smith JM. Modeling circulation systems in buildings using state dependent queueing models. Queueing Syst. 1989;4:319–38.

    Article  MathSciNet  MATH  Google Scholar 

  33. Smith JM. State-dependent queueing models in emergency evacuation networks. Transport Res Part B: Methodol. 1991;25(6):373–89.

    Article  Google Scholar 

  34. Banerjee S, Kanoria Y, Qian P. State dependent control of closed queueing networks. ACM SIGMETRICS Perform Evaluat Rev. 2018;46(1):2–4.

    Article  Google Scholar 

  35. Jain M, Sanga SS. State dependent queueing models under admission control F-policy: a survey. J Ambient Intellig Hum Comput. 2020;11:3873–91.

    Article  Google Scholar 

  36. Legros B. Dimensioning a queue with state-dependent arrival rates. Comput Oper Res. 2021;128: 105179.

    Article  MathSciNet  MATH  Google Scholar 

  37. Khazaei H, Misic J, Misic VB. Performance analysis of cloud computing centers using M/G/m/m+ r queuing systems. IEEE Trans Parallel Distrib Syst. 2011;23(5):936–43.

    Article  Google Scholar 

  38. Goswami V, Patra SS, Mund GB. Performance analysis of cloud with queue-dependent virtual machines. In: 2012 1st International Conference on Recent Advances in Information Technology (RAIT), IEEE; 2012. pp. 357–362.

  39. Varma PS, Satyanarayana A, Sundari MR. Performance analysis of cloud computing using queuing models. In: 2012 International Conference on Cloud Computing Technologies, Applications and Management (ICCCTAM), IEEE; 2012. pp. 12–15.

  40. Mary NAB, Saravanan K. Performance factors of cloud computing data centers using [(M/G/1):([\(\infty\)]/GDmodel)] queuing systems. Int J Grid Comput Appl. 2013;4(1):1.

    Google Scholar 

  41. Vakilinia S, Ali MM, Qiu D. Modeling of the resource allocation in cloud computing centers. Comput Networks. 2015;91:453–70.

    Article  Google Scholar 

  42. Atmaca T, Begin T, Brandwajn A, Castel-Taleb H. Performance evaluation of cloud computing centers with general arrivals and service. IEEE Trans Parallel Distrib Syst. 2015;27(8):2341–8.

    Article  Google Scholar 

  43. Mirtchev ST, Goleva RI, Atamian DK, Mirtchev MJ, Ganchev I, Stainov R. A generalized erlang-c model for the enhanced living environment as a service (eleaas). Cybernet Inform Technol. 2016;16(3):104–21.

    Article  Google Scholar 

  44. Goswami V, Mund GB. Computational analysis of multi-server discrete-time queueing system with balking, reneging and synchronous vacations. RAIRO-Oper Res. 2017;51(2):343–58.

    Article  MathSciNet  MATH  Google Scholar 

  45. Narman HS, Hossain MS, Atiquzzaman M, Shen H. Scheduling internet of things applications in cloud computing. Annals Telecommun. 2017;72:79–93.

    Article  Google Scholar 

  46. Beraldi R, Alnuweiri H. Sequential randomization load balancing for fog computing. In: 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), IEEE; 2018. pp. 1–6.

  47. Beraldi R, Alnuweiri H, Mtibaa A. A power-of-two choices based algorithm for fog computing. IEEE Trans Cloud Comput. 2018;8(3):698–709.

    Article  Google Scholar 

  48. Fan Q, Ansari N. Towards workload balancing in fog computing empowered iot. IEEE Trans Network Sci Eng. 2018;7(1):253–62.

    Article  MathSciNet  Google Scholar 

  49. Al-Khafajiy M, Baker T, Al-Libawy H, Maamar Z, Aloqaily M, Jararweh Y. Improving fog computing performance via fog-2-fog collaboration. Future Gener Comput Syst. 2019;100:266–80.

    Article  Google Scholar 

  50. Beraldi R, Alnuweiri H. Exploiting power-of-choices for load balancing in fog computing. In: 2019 IEEE International Conference on Fog Computing (ICFC), IEEE; 2019. pp. 80–86.

  51. Chan S. Least loaded sharing in fog computing cluster. In: Proc. 15th Int. Conf. Netw. Services, 2019. pp. 27–31.

  52. Jain M, Sanga SS. Admission control for finite capacity queueing model with general retrial times and state-dependent rates. J Indust Manag Optim. 2020;16(6):2625–49.

    Article  MathSciNet  MATH  Google Scholar 

  53. Phung-Duc T. Batch arrival multiserver queue with state-dependent setup for energy-saving data center. Appl. Probab. Stochastic Processes 2020. 421–440.

  54. Casale G. Integrated performance evaluation of extended queueing network models with line. In: 2020 Winter Simulation Conference (WSC), IEEE; 2020. pp. 2377–2388.

  55. Beraldi R, Canali C, Lancellotti R, Mattia GP. Distributed load balancing for heterogeneous fog computing infrastructures in smart cities. Pervas Mobile Comput. 2020;67: 101221.

    Article  Google Scholar 

  56. Stankevich E, Tananko I, Pagano M. Analysis of open queueing networks with batch services. In: International Conference on Information Technologies and Mathematical Modelling, Springer; 2021. pp. 40–51.

  57. Feitosa L, Santos L, Gonçalves G, Nguyen TA, Lee J-W, Silva FA. Internet of robotic things: A comparison of message routing strategies for cloud-fog computing layers using M/M/c/K queuing networks. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE; 2021. pp. 2049–2054.

  58. Mahavir Varma S, Theja Maguluri S. A heavy traffic theory of two-sided queues. ACM SIGMETRICS Perform Eval Rev. 2022;49(3):43–4.

    Article  MATH  Google Scholar 

  59. Goswami V, Sharma B, Patra SS, Chowdhury S, Barik RK, Dhaou IB. Iot-fog computing sustainable system for smart cities: A queueing-based approach. In: 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC), IEEE; 2023. pp. 1–6.

  60. Sivasamy R, Paranjothi N. Modelling of a cloud platform via M/M1+ M2/1 queues of a jackson network. Int J Cloud Comput. 2023;12(1):63–71.

    Article  Google Scholar 

  61. Bergquist J, Elmachtoub AN. Static pricing guarantees for queueing systems. arXiv preprint arXiv:2305.09168 (2023)

  62. Tran-Dang H, Kim D-S. Dynamic collaborative task offloading for delay minimization in the heterogeneous fog computing systems. J Commun Netw. 2023;25(2):244–52.

    Article  Google Scholar 

  63. Shortle JF, Thompson JM, Gross D, Harris CM. Fundamentals of Queueing Theory. John Wiley & Sons, 2018; 399.

  64. Bayoumi S, AlDakhil S, AlNakhilan E, Al Taleb E, AlShabib H. A review of crime analysis and visualization. case study: Maryland state, usa. In: 2018 21st Saudi Computer Society National Computer Conference (NCC), IEEE; 2018. pp. 1–6.

  65. Yang C, Goodchild M, Qunying H, Doug N, Raskin R, Robert X, Bambacus M, Fay D. Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digital Earth. 2021;4(4):305–29.

    Article  Google Scholar 

  66. Das J, Mukherjee A, Ghosh S, Buyya R. Spatio-Fog: a green and timeliness-oriented fog computing model for geospatial query resolution. Simul Modell Pract Theory. 2020;100(4):1–23.

    Google Scholar 

  67. Panigrahi S, Goswami V, Apat H, Barik R, Vidyarthi A, Gupta P, Alharbi M. An interconnected IoT-inspired network architecture for data visualization in remote sensing domain. Alexandria Eng J. 2023;81(1):17–28.

    Article  Google Scholar 

  68. Panigrahi S, Goswami V, Apat H, Mund G, Das P, Barik R. PQ-Mist: priority queueing-assisted mist-cloud-fog system for geospatial web services. mathematics. 2023;11(16):1–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra K. Barik.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. All figures and contents taken from the literature are properly cited.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Diverse Applications in Computing, Analytics and Networks” guest edited by Archana Mantri and Sagar Juneja.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahi, S.K., Goswami, V., Mund, G.B. et al. Performance Evaluation of IoST–Mist–Fog–Cloud Framework for Geospatial Crime Data Visualization: A State Dependent Queueing Approach. SN COMPUT. SCI. 5, 85 (2024). https://doi.org/10.1007/s42979-023-02400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02400-0

Keywords

Navigation