Skip to main content

Classification and Identification of Infectious COVID-19 Virus Using Deep Learning and Machine Learning Techniques: A Comprehensive Analysis

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Early detection and diagnosis of the infectious COVID-19 virus is a challenge due to the shortage of kits and rapid growth in every part of the world. The rising scope of Machine Learning (ML) and Deep Learning (DL) techniques can ease the problem of detecting the virus in the healthcare area and can also solve the problem. The paper’s main objective is to find out some of the practiced techniques and methodologies utilizing Chest X-rays and CT scans in this area to classify, detect, and diagnose the infectious COVID-19 virus and to find out the advantages, disadvantages, and limitations of the models. DL and ML are growing techniques, especially in imaging that could rapidly help diagnose COVID-19. The selection of the articles has been performed through the PRISMA guideline. The presented findings include country-wise publications, frequency of articles, data collected from various databases, analysis of the datasets, and the AI techniques included in the diagnosis. From the study, it is found that there are a lot of ML and DL techniques available to detect and classify COVID-19 with an acceptable performance and accuracy rate of 75–96% when validated with Chest X-rays, and the performance accuracy is lower in the case of Computed Tomography scans. However, very few techniques have shown sensitivity and specificity in the diagnosis of the infectious virus at a low rate. Even the time complexity and the intensity of the disease have also not been discussed in any of the articles, which is an important aspect. The work is concluded with proposals for future recommendations for different frameworks (DL/ML) that are robust, efficient, and sensible to detect the infectious COVID-19 virus rapidly and within a low period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Due to the nature of the research [review article] supporting data is not available, also the data that support the findings from other articles are appropriately cited under the reference section.

References

  1. Saha P, Sadi MS, Islam MM. EMCNet: automated COVID-19 diagnosis from X-ray images using convolutional neural network and an ensemble of machine learning classifiers. Inform Med Unlocked. 2021;22:100505.

    Article  Google Scholar 

  2. Dansana, D., Kumar, R., Bhattacharjee, Hemanth JD, Gupta D, Khanna A, Castillo O (2020)v Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using a deep learning algorithm. Soft Comput.

  3. Kumar A, Tripathi AR, Satapathy SC, Zhang YD. SARS-Net: COVID-19 detection from chest X-rays by combining graph convolutional network and convolutional neural network. Pattern Recognit. 2022;122: 108255.

    Article  Google Scholar 

  4. Nayak SR, Nayak DR, Sinha U, Arora V, Pachori RB. Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomed Signal Proc Control. 2021;64:102365.

    Article  Google Scholar 

  5. Hu T, Khishe M, Mohammadi M, Parvizi GR, Karim SHT, Rashid TA. Real-time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by a chimp optimization algorithm. Biomed Signal Proc Control. 2021;68:102764.

    Article  Google Scholar 

  6. Al-Bawi A, Al-Kaabi K, Jeryo M, Al-Fatlawi A. CCBlock: an effective use of deep learning for automatic diagnosis of COVID-19 using X-ray images. Res Biomed Eng. 2022;38(1):49–58. https://doi.org/10.1007/s42600-020-00110-7.

    Article  Google Scholar 

  7. Iqbal KA, Latief SJ, Mudasir BM. CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput Methods Programs Biomed. 2020;196:105581.

    Article  Google Scholar 

  8. Al-Waisy AS, Al-Fahdawi S, Mohammed MA, et al. COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images. Soft Comput. 2020. https://doi.org/10.1007/s00500-020-05424-3.

    Article  Google Scholar 

  9. Schwartz DA. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch Pathol Lab Med. 2020;144:799–805.

    Article  Google Scholar 

  10. Tong, L. China daily website-connecting china connecting the world. Available online: http://www.chinadaily.com.cn/. Accessed 15 Mar 2021.

  11. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi Y, Shen DJ. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19. IEEE Rev Biomed Eng. 2020;14:4–15.

    Article  Google Scholar 

  12. Li M, Lei P, Zeng B, Li Z, Yu P, Fan B, Wang C, Li Z, Zhou J, Hu S, et al. Coronavirus disease (COVID-19): spectrum of C.T. findings and temporal progression of the disease. Acad Radiol. 2020;27:603–8.

    Article  Google Scholar 

  13. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121: 103792.

    Article  Google Scholar 

  14. Karar ME, Hemdan EE-D, Shouman MA. Cascaded deep learning classifiers for computer-aided diagnosis of COVID-19 and pneumonia diseases in X-ray scans. Complex Intell Syst. 2021;7:235–47.

    Article  Google Scholar 

  15. Hizukuri A, Nakayama R, Nara M, Suzuki M, Namba K. Computer-aided diagnosis scheme for distinguishing between benign and malignant masses on breast DCE-MRI images using deep convolutional neural network with bayesian optimization. J Digit Imaging. 2021;34(1):116–23.

    Article  Google Scholar 

  16. Abbasian Ardakani A, Acharya UR, Habibollahi S, Mohammadi A. COVIDiag: a clinical CAD system to diagnose COVID-19 pneumonia based on CT findings. Eur Radiol. 2021;31(1):121–30.

    Article  Google Scholar 

  17. Marten K, Engelke C. Computer-aided detection and automated CT volumetry of pulmonary nodules. Eur Radiol. 2007;17(4):888–901.

    Article  Google Scholar 

  18. Al-Antari MA, Hua CH, Bang J, Lee S. Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images. Appl Intell (Dordr). 2021;51(5):2890–907.

    Article  Google Scholar 

  19. Al-masni MA, Al-antari MA, Park JM, Gi G, Kim TY, Rivera P, Valarezo E, Choi MT, Han SM, Kim TS. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput Methods Programs Biomed. 2018;157:85–94.

    Article  Google Scholar 

  20. Hizukuri A, Nakayama R, Nara M, Suzuki M, Namba K. Computer-aided diagnosis scheme for distinguishing between benign and malignant masses on breast DCE-MRI images using deep convolutional neural network with bayesian optimization. J Digit Imaging. 2021;34(1):116–23.

    Article  Google Scholar 

  21. Adnan Khan M, Abbas S, Masood Khan K, Al Ghamdi MA, Rehman A. Intelligent forecasting model of covid-19 novel coronavirus outbreak empowered with deep extreme learning machine. Comput, Mat Continua. 2020;64(3):1329–42.

    Google Scholar 

  22. Zaidan A, Zaidan B, Alsalem M, Albahri O, Albahri A, Qahtan MY. Applications Multi-agent learning neural network and Bayesian model for real-time IoT skin detectors: a new evaluation and benchmarking methodology. Neural Comput Appl. 2020;32:8315–66.

    Article  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8:336–41.

    Article  Google Scholar 

  24. Mostafiz R, Shorif UM, Alam NA, Reza M, Rahman MM. Covid-19 detection in chest X-ray through random forest classifier using a hybridization of deep CNN and DWT optimized features. J King Saud Univ Comput Inform Sci. 2021;34:3226–35.

    Google Scholar 

  25. Li X, Zhai M, Sun J. DDCNNC: dilated and depth wise separable convolutional neural network for diagnosis COVID-19 via chest X-ray images. Int J Cogn Comput Eng. 2021;2:71–82.

    Google Scholar 

  26. Shamsi A, Asgharnezhad H, Jokandan SS, Khosravi A, Kebria PM, Nahavandi D, Nahavandi S, Srinivasan D. An uncertainty-aware transfer learning-based framework for COVID-19 diagnosis. IEEE Trans Neural Netw Learn Sys. 2021;32(4):1408–17.

    Article  Google Scholar 

  27. Castiglione A, Vijayakumar P, Nappi M, Sadiq S, Umer M. COVID-19: automatic detection of the novel coronavirus disease from CT images using an optimized convolutional neural network. IEEE Trans Ind Inform. 2021;17(9):6480.

    Article  Google Scholar 

  28. Aminu M, Ahmad NA, Noor MHM. Covid-19 detection via deep neural network and occlusion sensitivity maps. Alex Eng J. 2021;60:4829–55.

    Article  Google Scholar 

  29. Jiang H, Tang S, Liu W, Zhang Y. Deep learning for COVID-19 chest CT (computed tomography) image analysis: a lesson from lung cancer. Comput Struct Biotechnol J. 2021;19:1391–9.

    Article  Google Scholar 

  30. Sheykhivand S, Mousavi Z, Mojtahedi S, Rezaii TY, Farzamnia A, Meshgini S, Saad I. Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images. Alex Eng J. 2021;603:2885–903.

    Article  Google Scholar 

  31. Singh KK, Singh A. Diagnosis of COVID-19 from chest x-ray images using wavelets-based depthwise convolution network. Big Data Mining Anal. 2021;4(2):84–93.

    Article  Google Scholar 

  32. Tang S, Wang C, Nie J, Kumar N, Zhang Y, Xiong Z, Barnawi A. EDL-COVID: Ensemble Deep Learning for COVID-19 Case Detection from Chest X-Ray Images. IEEE Trans Ind Inform. 2021;17(9):6539–49.

    Article  Google Scholar 

  33. Sharifrazi D, Alizadehsani R, Roshanzamir M, Joloudari JH, Shoeibi A, Jafari M, Hussain S, Sani JA, Hasanzadeh F, Khozeimeh F, Khosravi A, Nahavandi S, Panahiazar M, Zare A, Islam SMS, Acharya UR. Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images. Biomed Signal Proc Control. 2021;102622:1746–8094.

    Google Scholar 

  34. Rajaraman S, Siegelman J, Alderson PO, Folio LS, Folio LR, Antani SK. Iteratively pruned deep learning ensembles for COVID-19 detection in chest x-rays. IEEE Access. 2020;8:115041–50.

    Article  Google Scholar 

  35. Wang L, Kelly B, Lee EH, Wang H, Zheng J, Zhang W, Halabi S, Liu J, Tian Y, Han B, Huang C, Yeom KW, Deng K, Song J. Multi-classifier-based identification of COVID-19 from chest computed tomography using generalizable and interpretable radiomics features. Eur J f Radiol. 2021;136:109552.

    Article  Google Scholar 

  36. Chauhan T, Palivela H, Tiwari S. Optimization and fine-tuning of DenseNet model for classification of COVID-19 cases in medical imaging. Int J Inform Manag Data Insights. 2021;100020:2667–968.

    Google Scholar 

  37. Rahim ZM, Attar A. A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Inform Med Unlocked. 2020;19:100360.

    Article  Google Scholar 

  38. Narayan Das N, Kumar N, Kaur M, Kumar V, Singh D. Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays. IRBM. 2020;43:114–9.

    Article  Google Scholar 

  39. Abraham B, Nair MS. Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier. Biocybern Biomed Eng. 2020;40:1436–45.

    Article  Google Scholar 

  40. Shibly KH, Dey SK, Islam MT-U, Rahman MM. COVID faster R-CNN: a novel framework to diagnose novel coronavirus disease (COVID-19) in X-Ray images. Inform Med Unlocked. 2020;20: 100405.

    Article  Google Scholar 

  41. Moura JD, Garcia LR, Vidal PFL, Cruz M, Lopez LA, Lopez EC, Novo J, Ortega M. Deep convolutional approaches for the analysis of COVID-19 using chest x-ray images from portable devices. IEEE Access. 2020;8:195594–607.

    Article  Google Scholar 

  42. Minaee S, Kafieh R, Sonka M, Yazdani S, Jamalipour Soufi G. Deep-COVID: predicting COVID-19 from chest x-ray images using deep transfer learning. Med Image Anal. 2020;65:101794.

    Article  Google Scholar 

  43. Islam MZ, Islam MM, Asraf A. A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using x-ray images. Inform Med Unlocked. 2020;20:100412.

    Article  Google Scholar 

  44. Jain G, Mittal D, Thakur D, Mittal MK. A deep learning approach to detect Covid-19 coronavirus with X-Ray images. Biocybern Biomed Eng. 2020;40:1391–405.

    Article  Google Scholar 

  45. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121: 103792.

    Article  Google Scholar 

  46. Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from x-rays. Comput Methods Programs Biomed. 2020;196:105608.

    Article  Google Scholar 

  47. Pereira RM, Bertolini D, Teixeira LO, Silla CN, Costa YMG. COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed. 2020;194:105532.

    Article  Google Scholar 

  48. Tuncer T, Ozyurt F, Dogan S, Subasi A. A novel Covid-19 and pneumonia classification method based on F-transform. Chemometr Intell Lab Syst. 2021;15(210): 104256.

    Article  Google Scholar 

  49. De Moura J, Garcia LR, Vidal PFL, Cruz M, Lopez LA, Lopez EC, Ortega M. Deep convolutional approaches for the analysis of COVID-19 using chest x-ray images from portable devices. IEEE Access. 2020;8:195594–607. https://doi.org/10.1109/access.2020.3033762.

    Article  Google Scholar 

  50. Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from x-rays. Comput Methods Programs Biomed. 2020;196:105608.

    Article  Google Scholar 

  51. Heidari M, Mirniaharikandehei S, Khuzani AZ, Danala G, Qiu Y, Zheng B. Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with pre-processing algorithms. Int J Med Informatics. 2020;144: 104284. https://doi.org/10.1016/j.ijmedinf.2020.10428.

    Article  Google Scholar 

  52. Gupta A, Anjum GS, Katarya R. InstaCovNet-19: a deep learning classification model for the detection of COVID-19 patients using Chest X-ray. Appl Soft Comput. 2020. https://doi.org/10.1016/j.asoc.2020.106859.

    Article  Google Scholar 

  53. Karakanis S, Leontidis G. Lightweight deep learning models for detecting COVID-19 from chest X-ray images. Comput Biol Med. 2021;130: 104181. https://doi.org/10.1016/j.compbiomed.2020.104181.

    Article  Google Scholar 

  54. Joshi RC, Yadav S, Pathak VK, Malhotra HS, Khokhar HVS, Parihar A, Dutta MK. A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images. Biocybern Biomed Eng. 2021;41(1):239–54. https://doi.org/10.1016/j.bbe.2021.01.002.

    Article  Google Scholar 

  55. Sait U, KV GL, Shivakumar S, Kumar T, Bhaumik R, Prajapati S, Chakrapani A. A deep-learning based multimodal system for Covid-19 diagnosis using breathing sounds and chest X-ray images. Appl Soft Comput. 2021;109:107522. https://doi.org/10.1016/j.asoc.2021.107522.

    Article  Google Scholar 

  56. Adamidi ES, Mitsis K, Nikita KS. Artificial intelligence in clinical care amidst COVID-19 pandemic: a systematic review. Comput Struct Biotechnol J. 2021;19:2833–50. https://doi.org/10.1016/j.csbj.2021.05.010.

    Article  Google Scholar 

  57. Abbas A, Abdelsamea MM, Gaber MM. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl Intell. 2020. https://doi.org/10.1007/s10489-020-01829-7.

    Article  Google Scholar 

  58. Al-antari MA, Hua CH, Bang J, Lee S. Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images. Appl Intell. 2020. https://doi.org/10.1007/s10489-020-02076-6.

    Article  Google Scholar 

  59. Adedigba AP, Adeshina SA, Aina OE, Aibinu AM. Optimal hyperparameter selection of deep learning models for COVID-19 chest X-ray classification. Intell-Based Med. 2021;5: 100034. https://doi.org/10.1016/j.ibmed.2021.100034.

    Article  Google Scholar 

  60. Sakib S, Tazrin T, Fouda MM, Fadlullah ZM, Guizani M. DL-CRC: deep learning-based chest radiograph classification for COVID-19 detection: a novel approach. IEEE Access. 2020. https://doi.org/10.1109/ACCESS.2020.3025010.

    Article  Google Scholar 

  61. Ibrahim AU, Ozsoz M, Serte S, Al-Turjman F, Yakoi PS. Pneumonia classification using deep learning from chest x-ray images during COVID-19. Cogn Comput. 2021. https://doi.org/10.1007/s12559-020-09787-5.

    Article  Google Scholar 

  62. Calderon-Ramirez S, Yang S, Moemeni A, Colreavy-Donnelly S, Elizondo DA, Oala L, Molina-Cabello MA. Improving uncertainty estimation with semi-supervised deep learning for COVID-19 detection using chest x-ray images. IEEE Access. 2021;9:85442–54. https://doi.org/10.1109/access.2021.3085418.

    Article  Google Scholar 

  63. Ismael AM, Şengür A. The investigation of multiresolution approaches for chest X-ray image based COVID-19 detection. Health Inform Sci Sys. 2020. https://doi.org/10.1007/s13755-020-00116-6.

    Article  Google Scholar 

  64. Karar ME, Hemdan EE-D, Shouman MA. Cascaded deep learning classifiers for computer-aided diagnosis of COVID-19 and pneumonia diseases in X-ray scans. Complex Intell Sys. 2020. https://doi.org/10.1007/s40747-020-00199-4.

    Article  Google Scholar 

  65. Muhammad I, Yan Z. Supervised machine learning approaches: a survey. ICTACT J Soft Comput. 2015;5(3).

  66. Kotsiantis SB, Zaharakis I, Pintelas P. Supervised machine learning: a review of classification techniques. Emerg Artif Intell Appl Comput Eng. 2007;160(1):3–24.

    Google Scholar 

  67. Gupta MK, Chandra P. A comparative study of clustering algorithms. In: 2019 6th international conference on computing for sustainable global development (INDIACom). IEEE; 2019. p. 801–5.

    Google Scholar 

  68. Chao G, Luo Y, Ding W. Recent advances in supervised dimension reduction: a survey. Mach Learn Knowl Extr. 2019;1(1):341–58.

    Article  Google Scholar 

  69. Shrikant IB. Regression: simple linear. Int J Injury Control Safety Promot. 2018;25(1):113–5.

    Article  Google Scholar 

  70. Connelly L. Logistic regression. Medsurg Nurs. 2020;29(5):353–4.

    Google Scholar 

  71. Huibing Wang, Jinbo Xiong, Zhiqiang Yao, Mingwei Lin, Jun Ren. 2017 Research survey on support vector machine. In Proceedings of the 10th EAI international conference on mobile multimedia communications, 95–103.

  72. Rahman MM, Islam M, Manik M, Hossen M, Al-Rakhami MS, et al. Machine learning approaches for tackling novel coronavirus (covid-19) pandemic. Sn Comput Sci. 2021;2(5):1–10.

    Article  Google Scholar 

  73. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  74. Hastie T, Tibshirani R, Friedman J. Random forests. In: The elements of statistical learning. Springer; 2009. p. 587–604.

    Chapter  Google Scholar 

  75. Mr Brijain R, Patel MK, Rana K. A survey on decision tree algorithm for classification. Int J Eng Develop Res, IJEDR. 2014;2(1):1–5.

    Google Scholar 

  76. Moubayed A, Injadat M, Nassif AB, Lutfiyya H, Shami A. E-learning: challenges and research opportunities using machine learning data analytics. IEEE Access. 2018;6:39117–38.

    Article  Google Scholar 

  77. A. Alazab, M. Hobbs, J. Abawajy, M. Alazab, “Using feature selection for intrusion detection system”. In: 2012 international symposium on communications and information technologies (ISCIT), 2012, pp. 296–301.

  78. Alazab M, Venkatraman S, Watters P, Alazab M, Alazab A. Cybercrime: the case of obfuscated malware. In: Georgiadis C, Jahankhani H, Pimenidis E, Bashroush R, Al-Nemrat A, editors. Global security, safety and sustainability and e-democracy, vol. 99. Berlin Heidelberg: Springer; 2012. p. 204–11.

    Chapter  Google Scholar 

  79. Alazab M, Venkatraman S, Watters P, Alazab M. Information Security governance: the art of detecting hidden malware. In: Daniel M, Enrique SL, Eduardo FM, Mario GP, editors. IT security governance innovations: theory and research. US: IGI Global; 2013. p. 293–315.

    Chapter  Google Scholar 

  80. Mesleh A, Skopin D, Baglikov S, Quteishat A. Heart rate extraction from vowel speech signals. J Comput Sci Technol. 2012;27:1243–51.

    Article  Google Scholar 

  81. Mesleh A. Chi square feature extraction based svms arabic language text categorization system. J Comput Sci. 2007;3:430–5.

    Article  Google Scholar 

  82. Mesleh A. Support vector machines based Arabic language text classification system: feature selection comparative study. In: Advances in computer and information sciences and engineering. Springer; 2008. p. 11–6.

    Chapter  Google Scholar 

  83. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10:257–73.

    Article  Google Scholar 

  84. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  Google Scholar 

  85. E. E.-D. Hemdan, M. A. Shouman, M. E. Karar, “A framework of deep learning classifiers to diagnose COVID-19 in x-ray images.” arXiv preprint arXiv:2003.11055, 2020.

  86. M. Fu, S.-L. Yi, Y. Zeng, F. Ye, Y. Li, X. Dong, et al., “Deep learning-based recognizing COVID-19 and other Common infectious diseases of the lung by chest CT scan images,” medRxiv, 2020.

  87. Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. 2017 Understanding of a convolutional neural network. In: 2017 international conference on engineering and technology (ICET), IEEE, pp. 1–6.

  88. Rahman MM, Nooruddin S, Hasan KM, Dey NK. Hog+ cnn net: Diagnosing covid-19 and pneumonia by deep neural network from chest x-ray images. Sn Comput Sci. 2021;2(5):1–15.

    Article  Google Scholar 

  89. Medsker LR, Jain LC. Recurrent neural networks. Design Appl. 2001;5:64–7.

    Google Scholar 

  90. Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans Signal Proc. 1997;45(11):2673–81.

    Article  Google Scholar 

  91. Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: an overview. IEEE Signal Proc Mag. 2018;35(1):53–65.

    Article  Google Scholar 

  92. Wiering MA, Van Otterlo M. Reinforcement learning. Adapt, Learn, Optim. 2012;12(3):729.

    Google Scholar 

  93. Jang B, Kim M, Harerimana G, Kim JW. Q-learning algorithms: a comprehensive classification and applications. IEEE Access. 2019;7:133653–67.

    Article  Google Scholar 

  94. Subudhi AK, Mohanty M, Sahoo SK, Mohanty SK, Mohanty B. Automated delimitation and classification of autistic disorder using EEG signal. IETE J Res. 2023;69(2):951–9.

    Article  Google Scholar 

  95. Çallı E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: a survey. Med Image Anal. 2021;72: 102125.

    Article  Google Scholar 

  96. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  Google Scholar 

  97. Keidar D, Yaron D, Goldstein E, Shachar Y, Blass A, Charbinsky L, Eldar YC. COVID-19 classification of X-ray images using deep neural networks. Eur Radiol. 2021. https://doi.org/10.1007/s00330-021-08050-1.

    Article  Google Scholar 

  98. Luz E, Silva P, Silva R, Silva L, Guimarães J, Miozzo G, Menotti D. Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images. Res Biomed Eng. 2021. https://doi.org/10.1007/s42600-021-00151-6.

    Article  Google Scholar 

  99. Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal Appl. 2021;24(3):1207–20. https://doi.org/10.1007/s10044-021-00984-y.

    Article  Google Scholar 

  100. Pham TD. Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning? Health Inform Sci Sys. 2020. https://doi.org/10.1007/s13755-020-00135-3.

    Article  Google Scholar 

  101. Punn NS, Agarwal S. Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks. Appl Intell. 2020. https://doi.org/10.1007/s10489-020-01900-3.

    Article  Google Scholar 

  102. Ravi V, Narasimhan H, Chakraborty C, Pham TD. Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images. Multimedia Syst. 2021. https://doi.org/10.1007/s00530-021-00826-1.

    Article  Google Scholar 

  103. Shankar K, Perumal E. A novel hand-crafted with deep learning features based fusion model for COVID-19 diagnosis and classification using chest X-ray images. Complex Intell Sys. 2020;7(3):1277–93. https://doi.org/10.1007/s40747-020-00216-6.

    Article  Google Scholar 

  104. Shelke A, Inamdar M, Shah V, Tiwari A, Hussain A, Chafekar T, Mehendale N. Chest x-ray classification using deep learning for automated COVID-19 screening. SN Comput Sci. 2021. https://doi.org/10.1007/s42979-021-00695-5.

    Article  Google Scholar 

  105. Tabik S, Gomez-Rios A, Martin-Rodriguez JL, Sevillano-Garcia I, Rey-Area M, Charte D, Herrera F. COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest x-ray images. IEEE J of Biomed Health Inform. 2020;24(12):3595–605. https://doi.org/10.1109/jbhi.2020.3037127.

    Article  Google Scholar 

  106. Oh Y, Park S, Ye JC. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging. 2020;39(8):2688–700. https://doi.org/10.1109/tmi.2020.2993291.

    Article  Google Scholar 

  107. Yasar H, Ceylan M. A new deep learning pipeline to detect Covid-19 on chest X-ray images using local binary pattern, dual tree complex wavelet transforms and convolutional neural networks. Appl Intell. 2020. https://doi.org/10.1007/s10489-020-02019-1.

    Article  Google Scholar 

  108. Zebin T, Rezvy S. COVID-19 detection and disease progression visualization: deep learning on chest X-rays for classification and coarse localization. Appl Intell. 2020;51(2):1010–21. https://doi.org/10.1007/s10489-020-01867-1.

    Article  Google Scholar 

  109. Tuncer T, Dogan S, Ozyurt F. An automated residual exemplar local binary pattern and iterative relief based corona detection method using lung x-ray image. Chemom Intell Lab Sys. 2020. https://doi.org/10.1016/j.chemolab.2020.104054.

    Article  Google Scholar 

  110. Toğaçar M, Ergen B, Cömert Z. COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput Biol Med. 2020;121: 103805. https://doi.org/10.1016/j.compbiomed.2020.103805.

    Article  Google Scholar 

  111. Mahmud T, Rahman MA, Fattah SA. CovXNet: a multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Comput Biol Med. 2020;122: 103869. https://doi.org/10.1016/j.compbiomed.2020.103869.

    Article  Google Scholar 

  112. Varela-Santos S, Melin P. A new approach for classifying coronavirus COVID-19 based on its manifestation on chest x-rays using texture features and neural networks. Inf Sci. 2020. https://doi.org/10.1016/j.ins.2020.09.041.

    Article  Google Scholar 

  113. Anter AM, Oliva D, Thakare A, Zhang Z. AFCM-LSMA: New intelligent model based on Lévy slime mould algorithm and adaptive fuzzy C-means for identification of COVID-19 infection from chest X-ray images. Adv Eng Inform. 2021;49: 101317. https://doi.org/10.1016/j.aei.2021.101317.

    Article  Google Scholar 

  114. Dilshad S, Singh N, Atif M, Hanif A, Yaqub N, Farooq WA, Masood MT. Automated image classification of chest X-rays of COVID-19 using deep transfer learning. Results Phys. 2021;28:104529. https://doi.org/10.1016/j.rinp.2021.104529.

    Article  Google Scholar 

  115. Júnior DA, da Cruz LB, Bandeira DJO, da Silva GL, Junior GB, Silva AC, Gattass M. Automatic method for classifying COVID-19 patients based on chest X-ray images, using deep features and PSO-optimized XGBoost. Expert Syst Appl. 2021;183:115452. https://doi.org/10.1016/j.eswa.2021.115452.

    Article  Google Scholar 

  116. Recht MP, Dewey M, Dreyer K, Langlotz C, Niessen W, Prainsack B, Smith JJ. Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur Radiol. 2020;30(6):3576–84.

    Article  Google Scholar 

  117. Strohm L, Hehakaya C, Ranschaert ER, Boon WPC, Moors EHM. Implementation of artificial intelligence (AI) applications in radiology: hin- dering and facilitating factors. Eur Radiol. 2020;30(10):5525–32.

    Article  Google Scholar 

  118. Chokshi FH, Flanders AE, Prevedello LM, Langlotz CP. Fostering a healthy AI ecosystem for radiology: conclusions of the 2018 RSNA summit on AI in ra- diology. Radiology. 2019;1(2): 190021.

    Google Scholar 

  119. Meraihi Y, Gabis AB, Mirjalili S, et al. Machine learning-based research for COVID-19 detection, diagnosis, and prediction: a survey. SN COMPUT SCI. 2022;3:286.

    Article  Google Scholar 

  120. Ying S, Zheng S, Li L, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. MedRxiv 2020.

  121. Li L, Qin L, Xu Z, et al. Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct. Radiology 2020.

  122. Kamalov F, Rajab K, Cherukuri AK, Elnagar A, Safaraliev M. Deep learning for Covid-19 forecasting: State-of-the-art review. Neurocomputing. 2022;511:142–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Kumar Subudhi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, V., Subudhi, A.K. & Mohanty, M. Classification and Identification of Infectious COVID-19 Virus Using Deep Learning and Machine Learning Techniques: A Comprehensive Analysis. SN COMPUT. SCI. 5, 161 (2024). https://doi.org/10.1007/s42979-023-02467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02467-9

Keywords