Skip to main content
Log in

Edge Detection in Gray-Scale Images Using Partial Sum of Second-Order Taylor Series Expansion

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

In this work, we present an accurate and novel edge detection technique for gray-scale images using partial sum of Taylor series expansion (TSE). Taylor’s expansion theory gives a good estimator for continuous function in a small neighbourhood based on its derivatives. We explore the application of TSE for classical edge detection problem of identifying intensity changes in gray-scale images. To support oriented edges, partial sum is separately obtained along multiple directions using directional derivatives. We provide theoretical explanation and empirical evidences to justify the suitability of Taylor theory for edge detection problem. Experiments are conducted on segmentation dataset BSDS500 and the results are compared with existing classical edge detectors. Applicability of proposed approach is investigated on coarse edge detection of depth data and localisation of iris boundary parameters in iris authentication biometrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;6:679–98.

    Article  Google Scholar 

  2. Romani L, Rossini M, Schenone D. Edge detection methods based on RBF interpolation. J Comput Appl Math. 2019;349:532–47.

    Article  MathSciNet  Google Scholar 

  3. Dollár P, Zitnick CL. Fast edge detection using structured forests. IEEE Trans Pattern Anal Mach Intell. 2015;37(8):1558–70.

    Article  Google Scholar 

  4. Martin DR, Fowlkes CC, Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell. 2004;26(5):530–49.

    Article  Google Scholar 

  5. Ziou D, Tabbone S, et al. Edge detection techniques-an overview. Pattern Recognit Image Anal C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii. 1998;8:537–59.

    Google Scholar 

  6. Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell. 2011;33(5):898–916.

    Article  Google Scholar 

  7. Hidayat R, Green RD. Real-time texture boundary detection from ridges in the standard deviation space. In: BMVC; 2009. p. 1–10.

  8. Abad A, Barrio R, Marco-Buzunariz M, Rodríguez M. Automatic implementation of the numerical Taylor series method: a Mathematica and Sage approach. Appl Math Comput. 2015;268:227–45.

    Google Scholar 

  9. Gonzalez RC, Wintz P. Digital Image Processing. Boston: Addison Wesley Publishing Company; 1987.

    Google Scholar 

  10. Moreno PJ, Raj B, Stern RM. A vector Taylor series approach for environment-independent speech recognition. In: 1996 IEEE international conference on acoustics, speech, and signal processing, 1996. ICASSP-96. Conference proceedings, vol. 2. New York City: IEEE; 1996. p. 733–736.

  11. Lindeberg T. Edge detection and ridge detection with automatic scale selection. In: 1996 IEEE computer society conference on computer vision and pattern recognition, 1996. Proceedings CVPR’96. New York City:IEEE; 1996. p. 465–470.

  12. Roberts LG. Machine perception of three-dimensional solids. PhD thesis, Massachusetts Institute of Technology; 1963.

  13. Prewitt JM. Object enhancement and extraction. Pict Process Psychopictorics. 1970;10(1):15–9.

    Google Scholar 

  14. Sobel I, Feldman G. A 3x3 isotropic gradient operator for image processing. A talk at the Stanford Artificial Project in 1968. p. 271–2.

  15. Duda RO, Hart PE. Use of the Hough transformation to detect lines and curves in pictures. Commun ACM. 1972;15(1):11–5.

    Article  Google Scholar 

  16. Marr D, Hildreth E. Theory of edge detection. Proc R Soc Lond B: Biol Sci. 1980;207(1167):187–217.

    Article  Google Scholar 

  17. Morrone MC, Owens RA. Feature detection from local energy. Pattern Recognit Lett. 1987;6(5):303–13.

    Article  Google Scholar 

  18. Perona P, Malik J. Detecting and localizing edges composed of steps, peaks and roofs. In: Proceedings, third international conference on computer vision, 1990. New York City:IEEE; 1990. p. 52–57.

  19. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell. 1990;12(7):629–39.

    Article  Google Scholar 

  20. Freeman WT, Adelson EH, et al. The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell. 1991;13(9):891–906.

    Article  Google Scholar 

  21. Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell. 2002;24(5):603–19.

    Article  Google Scholar 

  22. Guru DS, Shekar BH, Nagabhushan P. A simple and robust line detection algorithm based on small eigenvalue analysis. Pattern Recognit Lett. 2004;25(1):1–13.

    Article  Google Scholar 

  23. Bowyer K, Kranenburg C, Dougherty S. Edge detector evaluation using empirical ROC curves. In: Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference On 1999;1:354–359. New York City: IEEE.

  24. Dollar P, Tu Z, Belongie S. Supervised learning of edges and object boundaries. In: 2006 IEEE computer society conference on computer vision and pattern recognition, vol. 2. New York City: IEEE; 2006. p. 1964–1971.

  25. Catanzaro B, Su B-Y, Sundaram N, Lee Y, Murphy M, Keutzer K. Efficient, high-quality image contour detection. In: 2009 IEEE 12th international conference on computer vision. IEEE; 2009. p. 2381–2388.

  26. Zheng S, Yuille A, Tu Z. Detecting object boundaries using low-, mid-, and high-level information. Comput Vis Image Underst. 2010;114(10):1055–67.

    Article  Google Scholar 

  27. Xiaofeng R, Bo L. Discriminatively trained sparse code gradients for contour detection. In: Advances in neural information processing systems; New York: Curran Associates, Inc; 2012. p. 584–92.

  28. Lim JJ, Zitnick CL, Dollár P. Sketch tokens: a learned mid-level representation for contour and object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; New York: IEEE 2013. p. 3158–65.

  29. Kivinen J, Williams C, Heess N. Visual boundary prediction: a deep neural prediction network and quality dissection. In: Artificial intelligence and statistics; 2014. p. 512–21.

  30. Felzenszwalb PF, Huttenlocher DP. Efficient graph-based image segmentation. Int J Comput Vis. 2004;59(2):167–81.

    Article  Google Scholar 

  31. Cour T, Benezit F, Shi J. Spectral segmentation with multiscale graph decomposition. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005, vol. 2. New York City: IEEE; 2005. p. 1124–1131.

  32. Lopez-Molina C, De Baets B, Bustince H, Sanz J, Barrenechea E. Multiscale edge detection based on Gaussian smoothing and edge tracking. Knowl Based Syst. 2013;44:101–11.

    Article  Google Scholar 

  33. Verma OP, Parihar AS. An optimal fuzzy system for edge detection in color images using bacterial foraging algorithm. IEEE Trans Fuzzy Syst. 2017;25(1):114–27.

    Article  Google Scholar 

  34. Yu Z, Feng C, Liu M-Y, Ramalingam S. Casenet: deep category-aware semantic edge detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; New York: IEEE; 2017. p. 5964–73.

  35. Shen W, Wang X, Wang Y, Bai X, Zhang Z. Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; New York: IEEE; 2015. p. 3982–91.

  36. Xie S, Tu Z. Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision; New York: IEEE; 2015. p. 1395–1403.

  37. Liu Y, Cheng M-M, Hu X, Wang K, Bai X. Richer convolutional features for edge detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; New York: IEEE; 2017. p. 3000–9.

  38. Marmanis D, Schindler K, Wegner JD, Galliani S, Datcu M, Stilla U. Classification with an edge: improving semantic image segmentation with boundary detection. ISPRS J Photogramm Remote Sens. 2018;135:158–72.

    Article  Google Scholar 

  39. Guan W, Wang T, Qi J, Zhang L, Lu H. Edge-aware convolution neural network based salient object detection. IEEE Signal Process Lett. 2019;26(1):114–8.

    Article  Google Scholar 

  40. Eser S, Derya A. A new edge detection approach via neutrosophy based on maximum norm entropy. Expert Syst Appl. 2019;115:499–511.

    Article  Google Scholar 

  41. Kovalevsky V. A new method of edge detection. In: Modern algorithms for image processing. Berlin: Springer; 2019. p. 101–25.

  42. Balochian S, Baloochian H. Edge detection on noisy images using Prewitt operator and fractional order differentiation. Multimedia Tools Appl. 2022;81(7):9759–70.

    Article  Google Scholar 

  43. Deng X, Yang Y, Zhang H, Ma Y. Correction to: PCNN double step firing mode for image edge detection. Multimedia Tools Appl. 2022;81(19):27215.

    Article  Google Scholar 

  44. Sung TL, Lee HJ. Depth edge detection using edge-preserving filter and morphological operations. Int J Syst Assur Eng Manag. 2020;11(4):812–7.

    Article  Google Scholar 

  45. Begum AR, Jana S. Edge detection using modified third order edge mask for grayscale medical image segmentation. In: Advances in smart system technologies. Berlin: Springer; 2021. p. 507–17.

  46. Ranjan R, Avasthi V. A hybrid edge detection mechanism based on edge preserving filtration and type-1 fuzzy logic. Int J Inf Technol. 2022;14(6):2991–3000.

    Google Scholar 

  47. Jhapate AK, Dronawat R, Saxena M, Chourey R. Improve the detection of retinopathy with Roberts cross edge detection. In: Information and communication technology for competitive strategies (ICTCS 2021). Berlin: Springer; 2023. p. 475–83.

  48. Murali GB, Santosh Kumar V, Behera DN, Mohanta KK, Tulankar O, Salimath SS. Pothole detection on roads using canny edge detection algorithm. In: Applications of computational methods in manufacturing and product design. Berlin: Springer; 2022. p. 653–61.

  49. Möller T, Machiraju R, Mueller K, Yagel R. Evaluation and design of filters using a Taylor series expansion. IEEE Trans Vis Comput Graph. 1997;3(2):184–99.

    Article  Google Scholar 

  50. Zhou Z, Chen L, Hu X. Color images enhancement for edge information protection based on second order Taylor series expansion approximation. Optik Int J Light Electron Opt. 2015;126(3):368–72.

    Article  Google Scholar 

  51. Chung Y. Vector Taylor series based model adaptation using noisy speech trained hidden Markov models. Pattern Recognit Lett. 2016;75:36–40.

    Article  Google Scholar 

  52. Bastys A, Kranauskas J, Krüger V. Iris recognition by fusing different representations of multi-scale Taylor expansion. Comput Vis Image Underst. 2011;115(6):804–16.

    Article  Google Scholar 

  53. Shekar BH, Bhat SS. Iris recognition using partial sum of second order Taylor series expansion. In: Proceedings of the tenth Indian conference on computer vision, graphics and image processing. New York: ACM; 2016. p. 81.

  54. Martin D, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th international conference on computer vision, vol. 2; 2001. p. 416–23.

  55. Abdou IE, Pratt WK. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc IEEE. 1979;67(5):753–63.

    Article  Google Scholar 

  56. Venkatanath N, Praneeth D, Bh MC, Channappayya SS, Medasani SS. Blind image quality evaluation using perception based features. In: 2015 Twenty first national conference on communications (NCC). New York City: IEEE; 2015. p. 1–6.

  57. Mittal A, Soundararajan R, Bovik AC. Making a completely blind image quality analyzer. IEEE Signal Process Lett. 2012;20(3):209–12.

    Article  Google Scholar 

  58. Mittal A, Moorthy AK, Bovik AC. No-reference image quality assessment in the spatial domain. IEEE Trans Image Process. 2012;21(12):4695–708.

    Article  MathSciNet  Google Scholar 

  59. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.

    Article  Google Scholar 

  60. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.

    Article  Google Scholar 

  61. Shekar B, Bhat SS. Multi-patches iris based person authentication system using particle swarm optimization and fuzzy c-means clustering. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2017;42:243.

    Article  Google Scholar 

  62. Indian Institute of Technology, Delhi, India, Iris Database. http://www4.comp.polyu.edu.hk/csajaykr/IITD/Database_Iris.htm/. Accessed 02 June 2022.

  63. Malaysia Multimedia University Iris Database. http://pesona.mmu.edu. Accessed 02 June 2022.

  64. Institute of Automation, Chinese Academy of Sciences. CASIA Iris Database. http://biometrics.idealtest.org/. Accessed 02 June 2022.

  65. Ramya M, Krishnaveni V, Sridharan K. Certain investigation on iris image recognition using hybrid approach of Fourier transform and Bernstein polynomials. Pattern Recognit Lett. 2017;94:154–62.

    Article  Google Scholar 

  66. Szymkowski M, Jasiński P, Saeed K. Iris-based human identity recognition with machine learning methods and discrete fast Fourier transform. Innov Syst Softw Eng. 2021;17(3):309–17.

    Article  Google Scholar 

  67. Qu SW, Guo ZH, Wang F. The algorithm based on the discrete Fourier transform of eye detecting and locating. In: Advanced materials research, vol. 680. Trans Tech Publ; 2013. p. 521–5.

  68. Yang T, Ma J, Huang S, Zhao Q. A new edge detection algorithm using FFT procedure. In: Proceedings of the 3rd international conference on multimedia technology (ICMT 2013). Berlin: Springer; 2014. p. 297–304.

  69. De Marsico M, Nappi M, Narducci F, Proença H. Insights into the results of MICHE I-mobile iris challenge evaluation. Pattern Recognit. 2018;74:286–304.

    Article  Google Scholar 

  70. Shekar B, Shetty PR, Bhat SS, Mestetsky L. Complex gradient function based image descriptor. SN Comput Sci. 2022;4(1):42.

    Article  Google Scholar 

  71. Haralick LS, Robert M. Computer and robot vision, vol. 1. Boston: Addison-Wesley Publishing Company, Inc; 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathnakara Shetty.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Pattern Recognition and Machine Learning” guest edited by Ashish Ghosh, Monidipa Das and Anwesha Law.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekar, B.H., Bhat, S.S. & Shetty, R. Edge Detection in Gray-Scale Images Using Partial Sum of Second-Order Taylor Series Expansion. SN COMPUT. SCI. 5, 197 (2024). https://doi.org/10.1007/s42979-023-02531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02531-4

Keywords

Navigation