Skip to main content
Log in

Lung and Colon Cancer Classification of Histopathology Images Using Convolutional Neural Network

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The greatest significant contributor to cancer-related morbidity and mortality worldwide is malignant lung tumors. Lung cancer frequency has been seen to be on the rise recently. Lung cancer histopathology diagnosis is a crucial part of the patient’s treatment. The current study aims to demonstrate the efficiency of convolutional neural networks for the identification of squamous cell carcinoma and adenocarcinoma of the lung and colon by investigating the diagnosis of histopathology images. Five state-of-the-art pre-trained (ImageNet) convolutional neural network architectures, VGG-19, InceptionResNetV2, DenseNet201, EfficientNetB6, and MobileNetV2, are employed in this investigation to tri-categorize lung cancer images (normal, adenocarcinoma, and squamous cell carcinoma), together with colon cancer images (normal and adenocarcinoma). Regularization strategies have been applied to fine-tune the learning rate for improving accuracy. The LC25000 dataset has been used to validate the proposed method. EfficientNetB6, VGG19, InceptionResNetV2, DenseNet201, and MobileNetV2 accuracy on test data is reported to be 93.12, 98.00, 97.92, 99.12, and 99.32 percent respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors have used the publicly accessible datasets [48] for the current research.

References

  1. Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed. 2009;13(2):236–51.

    Article  Google Scholar 

  2. World Health Organization et al. World health statistics overview 2019: monitoring health for the sdgs, sustainable development goals. Technical report, World Health Organization, 2019.

  3. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–89.

    Article  Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  Google Scholar 

  6. Alam J, Alam S, Hossan A. Multi-stage lung cancer detection and prediction using multi-class svm classifie. In: 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). IEEE; 2018. p. 1–4.

    Google Scholar 

  7. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  Google Scholar 

  8. Cruz CSD, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32(4):605–44.

    Article  Google Scholar 

  9. Carcinogenesis process. carcinogenesis. https://de.europeanwriterstour.com/images-2023/carcinogenesis Accessed July 2022.

  10. Cancer. Symptoms and causes-mayo clinic. available online:. https://www.mayoclinic.org/diseases-conditions/cancer/ symptoms-causes/syc-20370588 Accessed Aug 2022.

  11. Cancer. Available online. https://www.who.int/news-room/fact-sheets/detail/cancer Accessed Aug 2022.

  12. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

    Article  Google Scholar 

  13. Yamashita R, Nishio M, Do Gian RK, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–29.

    Article  Google Scholar 

  14. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan A, Widner K, Madams T, Cuadros J, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.

    Article  Google Scholar 

  15. Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V. Assessment of tumor heterogeneity:an emerging imaging tool for clinical practice? Insights Imaging. 2012;3(6):573–89.

    Article  Google Scholar 

  16. Cook GJR, O’Brien ME, Siddique M, Chicklore S, Loi HY, Sharma B, Punwani R, Bassett P, Goh V, Chua S. Non-small cell lung cancer treated with erlotinib: heterogeneity of 18f-fdg uptake at pet-association with treatment response and prognosis. Radiology. 2015;276(3):883–93.

    Article  Google Scholar 

  17. Nakane K, Takiyama A, Mori S, Matsuura N. Homology-based method for detecting regions of interest in colonic digital images. Diagn Pathol. 2015;10(1):1–5.

    Article  Google Scholar 

  18. Nishio M, Kubo T, Togashi K. Estimation of lung cancer risk using homology-based emphysema quantification in patients with lung nodules. PLoS One. 2019;14(1): e0210720.

    Article  Google Scholar 

  19. Nishio M, Nakane K, Tanaka Y. Application of the homology method for quantification of low-attenuation lung region inpatients with and without copd. Int J Chron Obstruct Pulmon Dis. 2016;11:2125.

    Article  Google Scholar 

  20. Nishio M, Nakane K, Kubo T, Yakami M, Emoto Y, Nishio M, Togashi K. Automated prediction of emphysema visual score using homology-based quantification of low-attenuation lung region. PLoS One. 2017;12(5): e0178217.

    Article  Google Scholar 

  21. Yan C, Nakane K, Wang X, Fu Y, Lu H, Fan X, Feldman MD, Madabhushi A, Xu J. Automated gleason grading on prostate biopsy slides by statistical representations of homology profile. Comput Methods Programs Biomed. 2020;194: 105528.

    Article  Google Scholar 

  22. Nakane K, Tsuchihashi Y, Nariaki Matsuura. A simple mathematical model utilizing topological invariants for automatic detection of tumor areas in digital tissue images. Diagn Pathol. 2013;8:1–4.

    Article  Google Scholar 

  23. Fogel AL, Kvedar JC. Artificial intelligence powers digital medicine. NPJ Digit Med. 2018;1(1):1–4.

    Article  Google Scholar 

  24. Baranwal N, Singh AK, Hellström T. Fusion of gesture and speech for increased accuracy in human robot interaction. In: 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE; 2019. p. 139–44.

    Chapter  Google Scholar 

  25. Singh A, Baranwal N, Richter K-F. A fuzzy inference system for a visually grounded robot state of mind. In: 24th European Conference on Artificial Intelligence (ECAI 2020), Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), Virtual, August 29-September 8, 2020. IOS Press; 2020. p. 2402–9.

    Google Scholar 

  26. Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velázquez Vega JE, Brat DJ, Cooper LAD. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci. 2018;115(13):E2970–9.

    Article  Google Scholar 

  27. Garg S, Garg S. Prediction of lung and colon cancer through analysis of histopathological images by utilizing pre-trained cnn models with visualization of class activation and saliency maps. In: 2020 3rd Artificial Intelligence and Cloud Computing Conference. 2020. p. 38–45.

  28. Kuepper C, Großerueschkamp F, Kallenbach-Thieltges A, Mosig A, Tannapfel A, Gerwert K. Label-free classification of colon cancer grading using infrared spectral histopathology. Faraday Discuss. 2016;187:105–18.

    Article  Google Scholar 

  29. Sirinukunwattana K, Raza SEA, Tsang Y-W, Snead DRJ, Cree IA, Rajpoot NM. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging. 2016;35(5):1196–206.

    Article  Google Scholar 

  30. Yuan Z, Izadyyazdanabadi M, Mokkapati D, Panvalkar R, Shin JY, Tajbakhsh N, Gurudu S, Liang J. Automatic polyp detection in colonoscopy videos. In: Medical Imaging 2017: Image Processing, vol. 10133. SPIE; 2017. p. 718–27.

    Google Scholar 

  31. Akbari M, Mohrekesh M, Rafiei S, Soroushmehr SMR, Karimi N, Samavi S, Najarian K. Classification of informative frames in colonoscopy videos using convolutional neural networks with binarized weights. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE; 2018. p. 65–8.

    Chapter  Google Scholar 

  32. Toraman S, Girgin M, Üstündağ B, Türkoğlu İ. Classification of the likelihood of colon cancer with machine learning techniques using ftir signals obtained from plasma. Turk J Electr Eng Comput Sci. 2019;27(3):1765–79.

    Article  Google Scholar 

  33. Nishio M, Nishio M, Jimbo N, Nakane K. Homology-based image processing for automatic classification of histopathological images of lung tissue. Cancers. 2021;13(6):1192.

    Article  Google Scholar 

  34. Hatuwal BK, Thapa HC. Lung cancer detection using convolutional neural network on histopathological images. Int J Comput Trends Technol. 2020;68:21–4.

    Article  Google Scholar 

  35. Bukhari SUK, Syed A, Bokhari SKA, Hussain SS, Armaghan SU, Shah SSH. The histological diagnosis of colonic adenocarcinoma by applying partial self supervised learning. medRxiv. 2020. https://doi.org/10.1101/2020.08.15.20175760

    Article  Google Scholar 

  36. Mangal S, Chaurasia A, Khajanchi A. Convolution neural networks for diagnosing colon and lung cancer histopathological images. arXiv preprint arXiv:2009.03878. 2020.

  37. Hatuwal BK, Thapa HC. Lung cancer detection using convolutional neural network on histopathological images. Int J Comput Trends Technol. 2020;68:21–4.

    Article  Google Scholar 

  38. Li M, Ma X, Chen C, Yuan Y, Zhang S, Yan Z, Chen C, Chen F, Bai Y, Zhou P, et al. Research on the auxiliary classification and diagnosis of lung cancer subtypes based on histopathological images. IEEE Access. 2021;9:53687–707.

    Article  Google Scholar 

  39. Adu K, Yu Y, Cai J, Owusu-Agyemang K, Twumasi BA, Wang X. Dhs-capsnet: Dual horizontal squash capsule networks for lung and colon cancer classification from whole slide histopathological images. Int J Imaging Syst Technol. 2021;31(4):2075–92.

    Article  Google Scholar 

  40. Kumar N, Sharma M, Singh VP, Madan C, Mehandia S. An empirical study of handcrafted and dense feature extraction techniques for lung and colon cancer classification from histopathological images. Biomed Signal Process Control. 2022;75: 103596.

    Article  Google Scholar 

  41. Sethy PK, Geetha Devi A, Padhan B, Behera SK, Sreedhar S, Das K. Lung cancer histopathological image classification using wavelets and alexnet. J X-Ray Sci Technol. 2023;31(1):211–21.

    Google Scholar 

  42. Grace John M, Baskar S. Extreme learning machine algorithm-based model for lung cancer classification from histopathological real-time images. Comput Intell. 2023. https://doi.org/10.1111/coin.12576

    Article  Google Scholar 

  43. Wadekar S, Singh DK. A modified convolutional neural network framework for categorizing lung cell histopathological image based on residual network. Healthc Anal. 2023;4: 100224.

    Article  Google Scholar 

  44. Shanmugam K, Rajaguru Harikumar. Exploration and enhancement of classifiers in the detection of lung cancer from histopathological images. Diagnostics. 2023;13(20):3289.

    Article  Google Scholar 

  45. Singh O, Singh KK. An approach to classify lung and colon cancer of histopathology images using deep feature extraction and an ensemble method. Int J Inf Technol. 2023;15(8):4149–60.

    Google Scholar 

  46. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Fei-Fei L. Desafio de reconhecimento visual em grande escala do imagenet. Int J Comput Vision. 2015;115(3):211–52.

    Article  MathSciNet  Google Scholar 

  47. Shakeel PM, Burhanuddin MA, Desa MI. Automatic lung cancer detection from ct image using improved deep neural network and ensemble classifier. Neural Comput Appl. 2020;34(15):1–14.

    Google Scholar 

  48. Borkowski AA, Bui MM, Thomas LB, Wilson CP, DeLand LA, Mastorides SM. Lung and colon cancer histopathological image dataset (lc25000). arXiv preprint arXiv:1912.12142. 2019.

  49. Ghiasi G, Lin T-Y, Le QV. Dropblock: A regularization method for convolutional networks. Adv Neural Inf Process Syst. 2018;31:1–11.

    Google Scholar 

  50. Gulli A, Pal S. Deep learning with Keras. Packt Publishing Ltd; 2017.

    Google Scholar 

  51. Keras. Api. https://keras.io/api/layers/regularizers/ Accessed July 2022.

  52. Masud M, Sikder N, Nahid A-A, Bairagi AK, AlZain MA. A machine learning approach to diagnosing lung and colon cancer using a deep learning-based classification framework. Sensors. 2021;21(3):748.

    Article  Google Scholar 

  53. Shandilya S, Nayak SR. Analysis of lung cancer by using deep neural network. In: Innovation in Electrical Power Engineering, Communication, and Computing Technology: Proceedings of Second IEPCCT 2021. Springer; 2022. p. 427–36.

    Google Scholar 

  54. Liang Meiyan, Ren Zhuyun, Yang Jiamiao, Feng Wenxiang, Li Bo. Identification of colon cancer using multi-scale feature fusion convolutional neural network based on shearlet transform. IEEE Access. 2020;8:208969–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushlendra Kumar Singh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Advances in Machine Vision and Augmented Intelligence” guest edited by Manish Kumar Bajpai, Ranjeet Kumar, Koushlendra Kumar Singh and George Giakos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, O., Kashyap, K.L. & Singh, K.K. Lung and Colon Cancer Classification of Histopathology Images Using Convolutional Neural Network. SN COMPUT. SCI. 5, 223 (2024). https://doi.org/10.1007/s42979-023-02546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02546-x

Keywords

Navigation