Skip to main content

Advertisement

Log in

A Systematic Review: Classification of Lung Diseases from Chest X-Ray Images Using Deep Learning Algorithms

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The purpose of this survey is to provide a comprehensive review of the most recent publications on lung disease classification from chest X-ray images using deep learning algorithms. Methods: This research aims to present several common chest radiography datasets and to introduce briefly the general image preprocessing procedures that are applied to chest X-ray images. Then, the classification of specific and multiple lung diseases is described, focusing on the method and dataset used in the selected studies, the evaluation measures and the results. In addition, the problems and future direction of lung diseases classification are discussed to provide an important research base for researchers in the future. As the most common examination tool, Chest X-ray (CXR) is crucial in the medical field for disease diagnosis. Thus, the classification of chest diseases based on chest X-ray has gained significant attention from researchers. In recent years, deep learning methods have been used and have emerged as powerful techniques in medical imaging fields. One hundred ten articles published from 2016 to 2023 were reviewed and summarized, confirming that this particular research area is very important and has great potential for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Data Availability

All data analysed during this study are included within the article.

Notes

  1. The largest abstract and citation database of peer-reviewed literature (scientific journals, books, and conference proceedings).

  2. Free resources of biomedical literature to improve global and personal health.

  3. A website that provides access to multiple databases for many different academic disciplines.

  4. The source of trusted journals, conferences, standards, e-books, and training courses.

  5. The source of medical, scientific, and technical research (journals, books, and articles).

  6. A publisher specializing in information technology.

  7. The source for medical, scientific, and technological research (journals, books, and articles).

References

  1. Forum of International Respiratory Societies. The Global Impact of Respiratory Disease – Second Edition. Sheffield, European Respiratory Society, (2017) (Accessed on 14 Jan 2023)

  2. World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report, Technical Report March, World Health Organization: Geneva, Switzerland, (2020) (Accessed on 20 Jan 2023)

  3. Welte T. Imaging in the diagnosis of lung disease: more sophisticated methods require greater interdisciplinary collaboration. Dtsch Arztebl Int. 2014;111(11):179. https://doi.org/10.3238/arztebl.2014.0179.

    Article  Google Scholar 

  4. Wang H, Xia Y. Chestnet: a deep neural network for classification of thoracic diseases on chest radiography. arXiv preprint. 2018. https://doi.org/10.48550/arXiv.1807.03058.

    Article  Google Scholar 

  5. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al. Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint. 2017. https://doi.org/10.48550/arXiv.1711.05225.

    Article  Google Scholar 

  6. Rajpurkar P, et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the chexnext algorithm to practicing radiologists. PLoS Med. 2018;15(11):1002686. https://doi.org/10.1371/journal.pmed.1002686.

    Article  Google Scholar 

  7. Kieu STH, Bade A, Hijazi MHA, Kolivand H. A survey of deep learning for lung disease detection on medical images: state-of-the-art, taxonomy, issues and future directions. J Imaging. 2020;6(12):131. https://doi.org/10.3390/jimaging6120131.

    Article  Google Scholar 

  8. Jaeger S, Candemir S, Antani S, Wáng Y-XJ, Lu P-X, Thoma G. Two public chest x-ray dataset for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg. 2014;4(6):475–7. https://doi.org/10.3978/j.issn.2223-4292.2014.11.20.

    Article  Google Scholar 

  9. Chest x-ray images (pneumonia), (2019). [Online] Available: https://www.kaggle.com/datasets/paultimothymooney/chest-xraypneumonia (2019)

  10. Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K-I, Matsui M, Fujita H, Kodera Y, Doi K. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am J Roentgenol. 2000;174(1):71–4. https://doi.org/10.2214/ajr.174.1.1740071.

    Article  Google Scholar 

  11. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestxray8: Hospital-scale chest x-ray database and benchmarks on weaklysupervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2097–2106. https://doi.org/10.1109/CVPR.2017.369

  12. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, Marklund H, Haghgoo B, Ball R, Shpanskaya K, et al. Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. Proceed AAAI Conf Artif Intell. 2019;33:590–7. https://doi.org/10.1609/aaai.v33i01.3301590.

    Article  Google Scholar 

  13. Johnson AEW, Pollard TJ, Berkowitz SJ, Greenbaum NR, Lungren MP, Deng C-Y, Mark RG, Horng S. Mimic-cxr, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data. 2019. https://doi.org/10.1038/s41597-019-0322-0.

    Article  Google Scholar 

  14. Ma Y, Zhou Q, Chen X, Lu H, Zhao Y (2019) Multi-attention network for thoracic disease classification and localization. In: ICASSP 20192019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1378–1382. 10.1109/ ICASSP.2019.8682952. IEEE

  15. Guendel S, Grbic S, Georgescu B, Liu S, Maier A, Comaniciu D. Learning to recognize abnormalities in chest x-rays with locationaware dense networks. Iberoam Congr Pattern Recogn. 2018. https://doi.org/10.1007/978-3-030-13469-3_88.

    Article  Google Scholar 

  16. Xu J, Li H, Li X. Ms-anet: deep learning for automated multi-label thoracic disease detection and classification. PeerJ Comput Sci. 2021;7:541. https://doi.org/10.7717/peerj-cs.541/supp-1.

    Article  Google Scholar 

  17. Chaudhary A, Hazra A, Chaudhary P (2019) Diagnosis of chest diseases in x-ray images using deep convolutional neural network. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. 10.1109/ ICCCNT45670.2019.8944762

  18. Al Mamlook RE, Chen S, Bzizi HF (2020) Investigation of the performance of machine learning classifiers for pneumonia detection in chest x-ray images. In: 2020 IEEE International Conference on Electro Information Technology (EIT), pp. 098–104. https://doi.org/10.1109/EIT48999.2020.9208232

  19. Xu X, Wang Y, Yang G, Hu Y (2016) Image enhancement method based on fractional wavelet transform. In: 2016 IEEE International Conference on Signal and Image Processing (ICSIP), pp. 194–197. https://doi.org/10.1109/SIPROCESS.2016.7888251

  20. Savitha S, Naveen N (2016) Algorithm for pre-processing chest-x-ray using multi-level enhancement operation. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 2182–2186. https://doi.org/10.1109/WiSPNET.2016. 7566529

  21. Rajaraman S, Candemir S, Xue Z, Alderson PO, Kohli M, Abuya J, Thoma GR, Antani S (2018) A novel stacked generalization of models for improved tb detection in chest radiographs. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 718–721. https://doi.org/10.1109/EMBC. 2018.8512337

  22. Hijazi MHA, Hwa SKT, Bade A, Yaakob R, Jeffree MS. Ensemble deep learning for tuberculosis detection using chest x-ray and canny edge detected images. IAES Int J Artif Intell. 2019;8(4):429–35. https://doi.org/10.11591/ijai.v8.i4.pp429-435.

    Article  Google Scholar 

  23. Veluchamy M, Subramani B. Image contrast and color enhancement using adaptive gamma correction and histogram equalization. Optik. 2019;183:329–37. https://doi.org/10.1016/j.ijleo.2019.02.054.

    Article  Google Scholar 

  24. Munadi K, Muchtar K, Maulina N, Pradhan B. Image enhancement for tuberculosis detection using deep learning. IEEE Access. 2020;8:217897–907. https://doi.org/10.1109/ACCESS.2020.3041867.

    Article  Google Scholar 

  25. Rahman T, Khandakar A, Qiblawey Y, Tahir A, Kiranyaz S, Kashem SBA, Islam MT, Al Maadeed S, Zughaier SM, Khan MS, et al. Exploring the effect of image enhancement techniques on covid-19 detection using chest x-ray images. Comput Biol Med. 2021;132:104319. https://doi.org/10.1016/j.compbiomed.2021.104319.

    Article  Google Scholar 

  26. El Asnaoui K, Chawki Y. Using x-ray images and deep learning for automated detection of coronavirus disease. J Biomol Struct Dyn. 2021;39(10):3615–26. https://doi.org/10.1080/07391102.2020.1767212.

    Article  Google Scholar 

  27. Iqbal A, Usman M, Ahmed Z. An efficient deep learning-based framework for tuberculosis detection using chest x-ray images. Tuberculosis. 2022;136: 102234. https://doi.org/10.1016/j.tube.2022.102234.

    Article  Google Scholar 

  28. AbdElhamid AA, AbdElhalim E, Mohamed MA, Khalifa F. Multi-classification of chest x-rays for covid-19 diagnosis using deep learning algorithms. Appl Sci. 2022;12(4):2080. https://doi.org/10.3390/app12042080.

    Article  Google Scholar 

  29. Al-Waisy AS, Al-Fahdawi S, Mohammed MA, Abdulkareem KH, Mostafa SA, Maashi MS, Arif M, Garcia-Zapirain B. Covidchexnet: hybrid deep learning framework for identifying covid-19 virus in chest x-rays images. Soft Comput. 2023;27(5):2657–72. https://doi.org/10.1007/s00500-020-05424-3.

    Article  Google Scholar 

  30. Shamrat FJM, Azam S, Karim A, Ahmed K, Bui FM, De Boer F. High-precision multiclass classification of lung disease through customized mobilenetv2 from chest x-ray images. Comput Biol Med. 2023;155: 106646. https://doi.org/10.1016/j.compbiomed.2023.106646.

    Article  Google Scholar 

  31. Hage Chehade A, Abdallah N, Marion J-M, Oueidat M, Chauvet P. Lung and colon cancer classification using medical imaging: a feature engineering approach. Phys Eng Sci Med. 2022;45(3):729–46. https://doi.org/10.1007/s13246-022-01139-x.

    Article  Google Scholar 

  32. Candemir S, Jaeger S, Lin W, Xue Z, Antani S, Thoma G. Automatic heart localization and radiographic index computation in chest x-rays. Med Imaging Comput-Aided Diagn. 2016;9785:302–9. https://doi.org/10.1117/12.2217209.

    Article  Google Scholar 

  33. Wang C, Elazab A, Wu J, Hu Q. Lung nodule classification using deep feature fusion in chest radiography. Comput Med Imaging Graph. 2017;57:10–8. https://doi.org/10.1016/j.compmedimag.2016.11.004.

    Article  Google Scholar 

  34. Novikov AA, Lenis D, Major D, Hladvka J, Wimmer M, Bühler K. Fully convolutional architectures for multiclass segmentation in chest radiographs. IEEE Trans Med Imaging. 2018;37(8):1865–76. https://doi.org/10.1109/TMI.2018.2806086.

    Article  Google Scholar 

  35. Dai W, Dong N, Wang Z, Liang X, Zhang H, Xing E. Structure correcting adversarial network for organ segmentation in chest x-rays. Deep Learn Med Image Analy Multimod Learn Clin Decis Support. 2018. https://doi.org/10.1007/978-3-030-00889-5_30.

    Article  Google Scholar 

  36. Liu H, Wang L, Nan Y, Jin F, Wang Q, Pu J. Sdfn: segmentation-based deep fusion network for thoracic disease classification in chest x-ray images. Comput Med Imaging Graph. 2019;75:66–73. https://doi.org/10.1016/j.compmedimag.2019.05.005.

    Article  Google Scholar 

  37. Chen S, Han Y, Lin J, Zhao X, Kong P. Pulmonary nodule detection on chest radiographs using balanced convolutional neural network and classic candidate detection. Artif Intell Med. 2020;107: 101881. https://doi.org/10.1016/j.artmed.2020.101881.

    Article  Google Scholar 

  38. Chen B, Zhang Z, Lin J, Chen Y, Lu G. Two-stream collaborative network for multi-label chest x-ray image classification with lung segmentation. Pattern Recogn Lett. 2020;135:221–7. https://doi.org/10.1016/j.patrec.2020.04.016.

    Article  Google Scholar 

  39. Mendoza J, Pedrini H. Detection and classification of lung nodules in chest x-ray images using deep convolutional neural networks. Comput Intell. 2020;36(2):370–401. https://doi.org/10.1111/coin.12241.

    Article  MathSciNet  Google Scholar 

  40. Rahman T, Khandakar A, Kadir MA, Islam KR, Islam KF, Mazhar R, Hamid T, Islam MT, Kashem S, Mahbub ZB, et al. Reliable tuberculosis detection using chest x-ray with deep learning, segmentation and visualization. IEEE Access. 2020;8:191586–601. https://doi.org/10.1109/ACCESS.2020.3031384.

    Article  Google Scholar 

  41. Xu Y, Lam H-K, Jia G. Manet: A two-stage deep learning method for classification of covid-19 from chest x-ray images. Neurocomputing. 2021;443:96–105. https://doi.org/10.1016/j.neucom.2021.03.034.

    Article  Google Scholar 

  42. Iqbal A, Usman M, Ahmed Z. Tuberculosis chest x-ray detection using cnn-based hybrid segmentation and classification approach. Biomed Signal Process Control. 2023;84:104667. https://doi.org/10.1016/j.bspc.2023.104667.

    Article  Google Scholar 

  43. Sharma V, Gupta SK, Shukla KK, et al. Deep learning models for tuberculosis detection and infected region visualization in chest xray images. Intell Med. 2023. https://doi.org/10.1016/j.imed.2023.06.001.

    Article  Google Scholar 

  44. Li F, Engelmann R, Pesce L, Armato SG, MacMahon H. Improved detection of focal pneumonia by chest radiography with bone suppression imaging. Eur Radiol. 2012;22(12):2729–35. https://doi.org/10.1007/s00330-012-2550-y.

    Article  Google Scholar 

  45. Yang W, Chen Y, Liu Y, Zhong L, Qin G, Lu Z, Feng Q, Chen W. Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med Image Anal. 2017;35:421–33. https://doi.org/10.1016/j.media.2016.08.004.

    Article  Google Scholar 

  46. Gordienko Y, Gang P, Hui J, Zeng W, Kochura Y, Alienin O, Rokovyi O, Stirenko S (2018) Deep learning with lung segmentation and bone shadow exclusion techniques for chest x-ray analysis of lung cancer. In: Advances in Computer Science for Engineering and Education, International Conference on Computer Science, Engineering and Education Applications (ICCSEEA), pp. 638–647. 10. 1007/978–3–319–91008–6_63

  47. Mamalakis M, Swift AJ, Vorselaars B, Ray S, Weeks S, Ding W, Clayton RH, Mackenzie LS, Banerjee A. Denrescov-19: A deep transfer learning network for robust automatic classification of covid19, pneumonia, and tuberculosis from x-rays. Comput Med Imaging Graph. 2021;94: 102008. https://doi.org/10.1016/j.compmedimag.2021.102008.

    Article  Google Scholar 

  48. Joshi RC, Yadav S, Pathak VK, Malhotra HS, Khokhar HVS, Parihar A, Kohli N, Himanshu D, Garg RK, Bhatt MLB, et al. A deep learning-based covid-19 automatic diagnostic framework using chest x-ray images. Biocybern Biomed Eng. 2021;41(1):239–54. https://doi.org/10.1016/j.bbe.2021.01.002.

    Article  Google Scholar 

  49. Rahimzadeh M, Attar A. A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2. Inform Med Unlocked. 2020;19: 100360. https://doi.org/10.1016/j.imu.2020.100360.

    Article  Google Scholar 

  50. Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A. Comparison of deep learning approaches for multi-label chest x-ray classification. Sci Rep. 2019;9(1):1–10. https://doi.org/10.1038/s41598-019-42294-8.

    Article  Google Scholar 

  51. Sharma H, Jain JS, Bansal P, Gupta S (2020) Feature extraction and classification of chest x-ray images using cnn to detect pneumonia. In: 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 227–231. 10. 1109/Confluence47617.2020.9057809

  52. Kumar N, Gupta M, Gupta D, Tiwari S. Novel deep transfer learning model for covid-19 patient detection using x-ray chest images. J Ambient Intell Humaniz Comput. 2023;14(1):469–78. https://doi.org/10.1007/s12652-021-03306-6.

    Article  Google Scholar 

  53. Sirazitdinov I, Kholiavchenko M, Mustafaev T, Yixuan Y, Kuleev R, Ibragimov B. Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Comput Electr Eng. 2019;78:388–99. https://doi.org/10.1016/j.compeleceng.2019.08.004

    Article  Google Scholar 

  54. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Inform Process Syst. 2014;27:2672–80.

    Google Scholar 

  55. Salehinejad H, Valaee S, Dowdell T, Colak E, Barfett J (2018) Generalization of deep neural networks for chest pathology classification in xrays using generative adversarial networks. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 990–994. https://doi.org/10.1109/ICASSP.2018.8461430

  56. Madani A, Moradi M, Karargyris A, Syeda-Mahmood T. Chest xray generation and data augmentation for cardiovascular abnormality classification. Med Imaging: Image Process. 2018;10574:415–20. https://doi.org/10.1117/12.2293971.

    Article  Google Scholar 

  57. Kora Venu S, Ravula S. Evaluation of deep convolutional generative adversarial networks for data augmentation of chest x-ray images. Future Internet. 2020;13(1):8. https://doi.org/10.3390/fi13010008.

    Article  Google Scholar 

  58. Albahli S, Yar GNAH. Ai-driven deep convolutional neural networks for chest x-ray pathology identification. J X-Ray Sci Technol. 2022;30(2):365–76. https://doi.org/10.3233/XST-211082.

    Article  Google Scholar 

  59. Islam MT, Aowal MA, Minhaz AT, Ashraf K. Abnormality detection and localization in chest x-rays using deep convolutional neural networks. arXiv Preprint. 2017. https://doi.org/10.48550/arXiv.1705.09850.

    Article  Google Scholar 

  60. Hooda R, Mittal A, Sofat S. Automated tb classification using ensemble of deep architectures. Multimed Tools Appl. 2019;78(22):31515–32. https://doi.org/10.1007/s11042-019-07984-5.

    Article  Google Scholar 

  61. Abbas A, Abdelsamea MM, Gaber MM. Detrac: Transfer learning of class decomposed medical images in convolutional neural networks. IEEE Access. 2020;8:74901–13. https://doi.org/10.1109/ACCESS.2020.2989273.

    Article  Google Scholar 

  62. Pham HH, Le TT, Tran DQ, Ngo DT, Nguyen HQ. Interpreting chest x-rays via cnns that exploit hierarchical disease dependencies and uncertainty labels. Neurocomputing. 2021;437:186–94. https://doi.org/10.1016/j.neucom.2020.03.127.

    Article  Google Scholar 

  63. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–82. https://doi.org/10.1148/radiol.2017162326.

    Article  Google Scholar 

  64. Abbas A, Abdelsamea MM, Gaber MM. Classification of covid-19 in chest x-ray images using detrac deep convolutional neural network. Appl Intell. 2021;51:854–64. https://doi.org/10.1007/s10489-020-01829-7.

    Article  Google Scholar 

  65. Rohilla A, Hooda R, Mittal A (2017) Tb detection in chest radiograph using deep learning architecture. ICETETSM-17, 136–147

  66. Shibly KH, Dey SK, Islam MT-U, Rahman MM. Covid faster r– cnn: A novel framework to diagnose novel coronavirus disease (covid-19) in x-ray images. Inform Med Unlocked. 2020;20: 100405. https://doi.org/10.1016/j.imu.2020.100405.

    Article  Google Scholar 

  67. Panwar H, Gupta P, Siddiqui MK, Morales-Menendez R, Singh V. Application of deep learning for fast detection of covid-19 in x-rays using ncovnet. Chaos Solitons Fractals. 2020;138:109944. https://doi.org/10.1016/j.chaos.2020.109944.

    Article  MathSciNet  Google Scholar 

  68. Militante SV, Dionisio NV, Sibbaluca BG (2020) Pneumonia and covid19 detection using convolutional neural networks. In: 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), pp. 1–6. https://doi.org/10.1109/ICVEE50212.2020. 9243290

  69. Ibrahim DM, Elshennawy NM, Sarhan AM. Deep-chest: Multiclassification deep learning model for diagnosing covid-19, pneumonia, and lung cancer chest diseases. Comput Biol Med. 2021;132: 104348. https://doi.org/10.1016/j.compbiomed.2021.104348.

    Article  Google Scholar 

  70. Ibrahim AU, Ozsoz M, Serte S, Al-Turjman F, Yakoi PS. Pneumonia classification using deep learning from chest x-ray images during covid-19. Cogn Comput. 2021. https://doi.org/10.1007/s12559-020-09787-5.

    Article  Google Scholar 

  71. Cicero M, Bilbily A, Colak E, Dowdell T, Gray B, Perampaladas K, Barfett J. Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol. 2017;52(5):281–7. https://doi.org/10.1097/RLI.0000000000000341.

    Article  Google Scholar 

  72. Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;43(2):635–40. https://doi.org/10.1007/s13246-020-00865-4.

    Article  Google Scholar 

  73. Sethi R, Mehrotra M, Sethi D (2020) Deep learning based diagnosis recommendation for covid-19 using chest x-rays images. In: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 1–4. https://doi.org/10.1109/ICIRCA48905. 2020.9183278

  74. Souid A, Sakli N, Sakli H. Classification and predictions of lung diseases from chest x-rays using mobilenet v2. Appl Sci. 2021;11(6):2751. https://doi.org/10.3390/app11062751.

    Article  Google Scholar 

  75. Elshennawy NM, Ibrahim DM. Deep-pneumonia framework using deep learning models based on chest x-ray images. Diagnostics. 2020;10(9):649. https://doi.org/10.3390/diagnostics10090649.

    Article  Google Scholar 

  76. Bush I (2016) Lung nodule detection and classification. Rep Stanford Comput Sci

  77. Tang Y, Wang X, Harrison AP, Lu L, Xiao J, Summers RM. Attention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographs. Int Workshop Mach Learn Med Imaging. 2018. https://doi.org/10.1007/978-3-030-00919-9_29.

    Article  Google Scholar 

  78. Li Z, Wang C, Han M, Xue Y, Wei W, Li L-J, Fei-Fei L (2018) Thoracic disease identification and localization with limited supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299

  79. Rahman T, Chowdhury ME, Khandakar A, Islam KR, Islam KF, Mahbub ZB, Kadir MA, Kashem S. Transfer learning with deep convolutional neural network (cnn) for pneumonia detection using chest x-ray. Appl Sci. 2020;10(9):3233. https://doi.org/10.3390/app10093233.

    Article  Google Scholar 

  80. Ausawalaithong W, Thirach A, Marukatat S, Wilaiprasitporn T (2018) Automatic lung cancer prediction from chest x-ray images using the deep learning approach. In: 2018 11th Biomedical Engineering International Conference (BMEiCON), pp. 1–5 (2018). 10. 1109/BMEiCON.2018.8609997

  81. Ge Z, Mahapatra D, Sedai S, Garnavi R, Chakravorty R. Chest x-rays classification: a multi-label and fine-grained problem. arXiv preprint. 2018. https://doi.org/10.48550/arXiv.1807.07247.

    Article  Google Scholar 

  82. Mo S, Cai M. Deep learning based multi-label chest x-ray classification with entropy weighting loss. Int Symp Comput Intell Design (ISCID). 2019;2:124–7. https://doi.org/10.1109/ISCID.2019.10111.

    Article  Google Scholar 

  83. Chen B, Li J, Lu G, Zhang D. Lesion location attention guided network for multi-label thoracic disease classification in chest x-rays. IEEE J Biomed Health Inform. 2019;24(7):2016–27. https://doi.org/10.1109/JBHI.2019.2952597.

    Article  Google Scholar 

  84. Ge Z, Mahapatra D, Chang X, Chen Z, Chi L, Lu H. Improving multi-label chest x-ray disease diagnosis by exploiting disease and health labels dependencies. Multimed Tools Appl. 2020;79(21):14889–902. https://doi.org/10.1007/s11042-019-08260-2.

    Article  Google Scholar 

  85. Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y. Thorax disease classification with attention guided convolutional neural network. Pattern Recogn Lett. 2020;131:38–45. https://doi.org/10.1016/j.patrec.2019.11.040.

    Article  Google Scholar 

  86. Guan Q, et al. Multi-label chest x-ray image classification via categorywise residual attention learning. Pattern Recogn Lett. 2020;130:259–66. https://doi.org/10.1016/j.patrec.2018.10.027.

    Article  Google Scholar 

  87. Hwang S, Kim H-E, Jeong J, Kim H-J. A novel approach for tuberculosis screening based on deep convolutional neural networks. Med Imaging Comput-aided Diagn. 2016;9785:750–7. https://doi.org/10.1117/12.2216198.

    Article  Google Scholar 

  88. Andika LA, Pratiwi H, Handajani SS. Convolutional neural network modeling for classification of pulmonary tuberculosis disease. J Phys Conf Ser. 2020;1490:012020. https://doi.org/10.1088/1742-6596/1490/1/012020.

    Article  Google Scholar 

  89. Huy VTQ, Lin C-M. An improved densenet deep neural network model for tuberculosis detection using chest x-ray images. IEEE Access. 2023. https://doi.org/10.1109/ACCESS.2023.3270774.

    Article  Google Scholar 

  90. Acharya AK, Satapathy R. A deep learning based approach towards the automatic diagnosis of pneumonia from chest radio-graphs. Biomed Pharmacol J. 2020;13(1):449–55. https://doi.org/10.13005/bpj/1905.

    Article  Google Scholar 

  91. Yang Y, Mei G, Piccialli F. A deep learning approach considering image background for pneumonia identification using explainable ai (xai). IEEE/ACM Trans Comput Biol Bioinf. 2022. https://doi.org/10.1109/TCBB.2022.3190265.

    Article  Google Scholar 

  92. Sharma S, Guleria K. A deep learning based model for the detection of pneumonia from chest x-ray images using vgg-16 and neural networks. Proced Comput Sci. 2023;218:357–66. https://doi.org/10.1016/j.procs.2023.01.018.

    Article  Google Scholar 

  93. Takemiya R, Kido S, Hirano Y, Mabu S. Detection of pulmonary nodules on chest x-ray images using r-cnn. Int Forum Med Imaging Asia. 2019;11050:147–52. https://doi.org/10.1117/12.2521652.

    Article  Google Scholar 

  94. Salman FM, Abu-Naser SS, Alajrami E, Abu-Nasser BS, Alashqar BA. Covid-19 detection using artificial intelligence. Int J Acad Eng Res (IJAER). 2020;4:18–25.

    Google Scholar 

  95. Das D, Santosh K, Pal U. Truncated inception net: Covid-19 outbreak screening using chest x-rays. Phys Eng Sci Med. 2020;43(3):915–25. https://doi.org/10.1007/s13246-020-00888-x.

    Article  Google Scholar 

  96. Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A. Covid-caps: A capsule network-based framework for identification of covid-19 cases from x-ray images. Pattern Recogn Lett. 2020;138:638–43. https://doi.org/10.1016/j.patrec.2020.09.010.

    Article  Google Scholar 

  97. Khan AI, Shah JL, Bhat MM. Coronet: A deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput Methods Programs Biomed. 2020;196:105581. https://doi.org/10.1016/j.cmpb.2020.105581.

    Article  Google Scholar 

  98. Hussain E, Hasan M, Rahman MA, Lee I, Tamanna T, Parvez MZ. Corodet: A deep learning based classification for covid-19 detection using chest x-ray images. Chaos Solitons Fractals. 2021;142: 110495. https://doi.org/10.1016/j.chaos.2020.110495.

    Article  MathSciNet  Google Scholar 

  99. Sahin ME. Deep learning-based approach for detecting covid-19 in chest x-rays. Biomed Signal Process Control. 2022;78: 103977. https://doi.org/10.1016/j.bspc.2022.103977.

    Article  Google Scholar 

  100. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of covid-19 cases using deep neural networks with x-ray images. Comput Biol Med. 2020;121: 103792. https://doi.org/10.1016/j.compbiomed.2020.103792.

    Article  Google Scholar 

  101. Khan E, Rehman MZU, Ahmed F, Alfouzan FA, Alzahrani NM, Ahmad J. Chest x-ray classification for the detection of covid19 using deep learning techniques. Sensors. 2022;22(3):1211. https://doi.org/10.3390/s22031211.

    Article  Google Scholar 

  102. Alshmrani GMM, Ni Q, Jiang R, Pervaiz H, Elshennawy NM. A deep learning architecture for multi-class lung diseases classification using chest x-ray (cxr) images. Alex Eng J. 2023;64:923–35. https://doi.org/10.1016/j.aej.2022.10.053.

    Article  Google Scholar 

  103. Rubin J, Sanghavi D, Zhao C, Lee K, Qadir A, Xu-Wilson M. Large scale automated reading of frontal and lateral chest x-rays using dual convolutional neural networks. arXiv preprint. 2018. https://doi.org/10.48550/arXiv.1804.07839.

    Article  Google Scholar 

  104. Allaouzi I, Ahmed MB. A novel approach for multi-label chest xray classification of common thorax diseases. IEEE Access. 2019;7:64279–88. https://doi.org/10.1109/ACCESS.2019.2916849.

    Article  Google Scholar 

  105. Yao L, Poblenz E, Dagunts D, Covington B, Bernard D, Lyman K. Learning to diagnose from scratch by exploiting dependencies among labels. ArXiv preprint. 2017. https://doi.org/10.48550/arXiv.1710.10501.

    Article  Google Scholar 

  106. Kumar P, Grewal M, Srivastava MM (2018) Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs. In: International Conference Image Analysis and Recognition, ICIAR 2018, Lecture Notes in Computer Science, pp. 546–552. https://doi.org/10.1007/978-3-319-93000-8_62

  107. Yan C, Yao J, Li R, Xu Z, Huang J (2018) Weakly supervised deep learning for thoracic disease classification and localization on chest x-rays. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 103–110. https://doi.org/10.1145/3233547.3233573

  108. Shen Y, Gao M (2018) Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization. In: International Workshop on Machine Learning in Medical Imaging, pp. 389–397. https://doi.org/10.1007/978-3-030-00919-9_45

  109. Ho TKK, Gwak J. Multiple feature integration for classification of thoracic disease in chest radiography. Appl Sci. 2019;9(19):4130. https://doi.org/10.3390/app9194130.

    Article  Google Scholar 

  110. Chen B, Li J, Guo X, Lu G. Dualchexnet dual asymmetric feature learning for thoracic disease classification in chest x-rays. Biomed Signal Process Control. 2019;53:101554. https://doi.org/10.1016/j.bspc.2019.04.031.

    Article  Google Scholar 

  111. Ma C, Wang H, Hoi SC (2019) Multi-label thoracic disease image classification with cross-attention networks. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 730–738. https://doi.org/10.1007/978-3-030-32226–7_ 81

  112. Teixeira V, Braz L, Pedrini H, Dias Z 2020) Dualanet: dual lesion attention network for thoracic disease classification in chest x-rays. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 69–74 (https://doi.org/10.1109/IWSSIP48289. 2020.9145037

  113. Albahli S, Rauf HT, Algosaibi A, Balas VE. Ai-driven deep cnn approach for multi-label pathology classification using chest xrays. PeerJ Comput Sci. 2021;7:495. https://doi.org/10.7717/peerj-cs.495.

    Article  Google Scholar 

  114. Zhao J, Li M, Shi W, Miao Y, Jiang Z, Ji B. A deep learning method for classification of chest x-ray images. J Phys Conf Ser. 2021;1848:012030. https://doi.org/10.1088/1742-6596/1848/1/012030.

    Article  Google Scholar 

  115. Yang M, Tanaka H, Ishida T. Performance improvement in multilabel thoracic abnormality classification of chest x-rays with noisy labels. Int J Comput Assist Radiol Surg. 2022. https://doi.org/10.1007/s11548-022-02684-2.

    Article  Google Scholar 

  116. Jin Y, Lu H, Zhu W, Huo W. Deep learning based classification of multi-label chest x-ray images via dual-weighted metric loss. Comput Biol Med. 2023;157: 106683. https://doi.org/10.1016/j.compbiomed.2023.106683.

    Article  Google Scholar 

  117. Mann M, Badoni RP, Soni H, Al-Shehri M, Kaushik AC, Wei D-Q. Utilization of deep convolutional neural networks for accurate chest x-ray diagnosis and disease detection. Interdiscip Sci Comput Life Sci. 2023. https://doi.org/10.1007/s12539-023-00562-2.

    Article  Google Scholar 

  118. World Health Organization. Tuberculosis - 14 October 2021. (Accessed on 14 Jan 2023)

  119. World Health Organization. Pneumonia in children - 11 November 2022. (Accessed on 10 Jan 2023)

  120. World Health Organization. Cancer - 3 February 2022. (accessed on 23 january 2023)

  121. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. Rusboost: A hybrid approach to alleviating class imbalance. IEEE Trans Syst, Man, and cybern-Part A: Syst Hum. 2009;40(1):185–97. https://doi.org/10.1109/TSMCA.2009.2029559.

    Article  Google Scholar 

  122. World Health Organization. Naming the coronavirus disease (COVID19) and the virus that causes it, (2020). (Accessed on 20 jan 2023)

  123. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 march 2020. (Accessed on 20 Jan 2023)

  124. Phung H, Dao Q, Tran A (2023) Wavelet diffusion models are fast and scalable image generators. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10199–10208

  125. Domingos P. A few useful things to know about machine learning. Commun ACM. 2012;55(10):78–87. https://doi.org/10.1145/2347736.2347755.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aya Hage Chehade.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study uses public databases cited in the references and therefore this section is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hage Chehade, A., Abdallah, N., Marion, JM. et al. A Systematic Review: Classification of Lung Diseases from Chest X-Ray Images Using Deep Learning Algorithms. SN COMPUT. SCI. 5, 405 (2024). https://doi.org/10.1007/s42979-024-02751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02751-2

Keywords

Navigation