Skip to main content
Log in

Robust Design and Intelligent Modelling of Organic-Based Composites for Armoury Applications

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The study focused on assessing selected organic fillers’ impact (periwinkle and clam shells) on the physicochemical and mechanical properties of polyester composites. The tensile, compressive, flexural and Brinell hardness tests were respectively carried out in accordance to ASTM standards. The methods involved grinding and sieve analysis of the shells, material preparation, and Taguchi robust design aided by Plackett–Burman screening. Signal-to-noise ratio analysis guided composite fabrication. The process control variables were grouped in terms of particles sizes: 75, 150, 425 µm, weight fraction: 5%, 20%, 40% and material thickness: 5, 15, 25 mm. The Artificial Neural Network (ANN) training was carried out using MATLAB R2013a and the cascade-forward back-propagation architecture while Adaptive network-based fuzzy system (ANFIS) which is a well-known hybrid artificial intelligence model was subsequently applied. The geometrical model of 9 mm FMJ armour piercing ammunition projectile and the armour plate was modeled using a commercial finite element software package (ANSYS v14) suitable for high velocity impact. The Finite Element Analysis (FEA) further investigates the deformation, elastic strain, and stress response of clam and periwinkle reinforced composites under ballistic impact. Scanning Electron Microscopy (SEM), Fourier transform infrared (FTIR), Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA)/Differential thermal analysis (DTA) were deployed to further study the morphology, chemical composition, phase transitions and thermal stability of the optimal material. The results revealed that the clam shell reinforced composite have mechanical responses of 11.038 MPa, 17.07 MPa, 40.2 MPa, and 69.62 N/mm for tensile, compressive, flexural, and hardness strength respectively. While the periwinkle shell reinforced composite has mechanical responses of 16.111 MPa, 17.173 MPa, 39.7 MPa, and 63.57 N/mm for tensile, compressive, flexural, and hardness strength respectively. FEA results indicate decreasing deformation, elastic strain, and stress with increasing material thickness. The investigation carried out indicated the impact of the organic fillers and showed that the new material properties depend on the reinforcement combinations of control parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The dataset generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adah PU, Nuhu AA, Salawu AA, Hassan AB, Ubi PA. Characterization of periwinkle shell ash reinforced polymer composite for automotive application. FUDMA J Sci. 2024;8(1):83–92.

    Article  Google Scholar 

  2. Agbaje OBA, Wirth R, Morales LFG, Shirai K, Kosnik M, Watanabe T, Jacob DE. Architecture of crossed-lamellar bivalve shells: the southern giant clam (Tridacna derasa, Röding, 1798). R Soc Open Sci. 2017;4(9): 170622.

    Article  Google Scholar 

  3. Águila-Almanza E, Hernández-Cocoletzi H, Rubio-Rosas E, Calleja-González M, Lim HR, Khoo KS, Singh V, Maldonado-Montiel JC, Show PL. Recuperation and characterization of calcium carbonate from residual oyster and clamshells and their incorporation into a residential finish. Chemosphere. 2022;288: 132550.

    Article  Google Scholar 

  4. Aimikhe VJ, Lekia GB. An overview of the applications of periwinkle (Tympanotonus fuscatus) shells. Curr J Appl Sci Technol. 2021;40(18):31–58.

    Article  Google Scholar 

  5. Alghamdi HM, Abutalib MM, Mannaa MA, Nur O, Abdelrazek EM, Rajeh A. Modification and development of high bioactivities and environmentally safe polymer nanocomposites doped by Ni/ZnO nanohybrid for food packaging applications. J Market Res. 2022;19:3421–32.

    Google Scholar 

  6. Al-Maharma AY, Patil SP, Markert B. Effects of porosity on the mechanical properties of additively manufactured components: a critical review. Mater Res Express. 2020;7(12): 122001.

    Article  Google Scholar 

  7. Anand KJ, Ekbote T. Optimization of clamshell content for improved properties in bamboo-epoxy composites. Frat Integr Strutt. 2024;18(69):29–42.

    Google Scholar 

  8. Ani OI, Onoh GN, Akpor OJ, Ukpai CA. Design, development and performance evaluation of a mobile rice threshing machine. Int J Emerg Trends Eng Dev. 2020;10:7–17.

    Google Scholar 

  9. Asyraf MRM, Nurazzi NM, Norrrahim MNF, Hazrati KZ, Ghani A, Sabaruddin FA, et al. Thermal properties of oil palm lignocellulosic fibre reinforced polymer composites: a comprehensive review on thermogravimetry analysis. Cellulose. 2023;30(5):2753–90.

    Article  Google Scholar 

  10. Baloyi RB, Ncube S, Moyo M, Nkiwane L, Dzingai P. Analysis of the properties of a glass/sisal/polyester composite. Sci Rep. 2021;11(1):361.

    Article  Google Scholar 

  11. Bamigboye GO, Nworgu AT, Odetoyan AO, Kareem M, Enabulele DO, Bassey DE. Sustainable use of seashells as binder in concrete production: prospect and challenges. J Build Eng. 2021;34: 101864.

    Article  Google Scholar 

  12. Bao Y, Gao X, Wu Y, Sun M, Li G. Research progress of armor protection materials. J Phys Conf Ser. 2021;1855(1):012035.

    Article  Google Scholar 

  13. Benzait Z, Trabzon L. A review of recent research on materials used in polymer–matrix composites for body armor application. J Compos Mater. 2018;52(23):3241–63.

    Article  Google Scholar 

  14. Bishop CM. Neural networks for pattern recognition. Oxford: Oxford University Press; 1995.

    Book  Google Scholar 

  15. Box GE, Hunter WH, Hunter S. Statistics for experimenters, vol. 664. New York: John Wiley and Sons; 1978.

    Google Scholar 

  16. Box GE, Wilson KB. On the experimental attainment of optimum conditions. In: Breakthroughs in statistics: methodology and distribution. New York, NY: Springer; 1992. p. 270–310.

    Chapter  Google Scholar 

  17. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  18. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.

    Article  Google Scholar 

  19. David Müzel S, Bonhin EP, Guimarães NM, Guidi ES. Application of the finite element method in the analysis of composite materials: a review. Polymers. 2020;12(4):818.

    Article  Google Scholar 

  20. Dinesh S, Kumaran P, Mohanamurugan S, Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Bhat KS. Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res. 2020;27:1–13.

    Article  Google Scholar 

  21. Dong G, Wijaya G, Tang Y, Zhao YF. Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Addit Manuf. 2018;19:62–72.

    Google Scholar 

  22. El-Wazery MS, El-Elamy MI, Zoalfakar SH. Mechanical properties of glass fiber reinforced polyester composites. Int J Appl Sci Eng. 2017;14(3):121–31.

    Google Scholar 

  23. Etim RK, Ekpo DU, Ebong UB, Usanga IN. Influence of periwinkle shell ash on the strength properties of cement-stabilized lateritic soil. Int J Pavement Res Technol. 2021. https://doi.org/10.1007/s42947-021-00072-8.

    Article  Google Scholar 

  24. Eziefula UG, Obiechefu GC, Charles ME. Use of periwinkle shell by-products in Portland cement-based materials: an overview. Int J Environ Waste Manage. 2020;26(3):362–88.

    Article  Google Scholar 

  25. Femi-Oyetoro J. Prediction of flexural properties for additively manufactured short carbon fiber reinforced composites using machine learning techniques. Master’s thesis, Tennessee Technological University; 2021.

  26. Fisher RA. Statistical methods for research workers, vol. 5. Scotland: Oliver and Boyd; 1928.

    Google Scholar 

  27. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55(1):119–39.

    Article  MathSciNet  Google Scholar 

  28. Gul H, Shah AUHA, Gul S, Bilal S. Analysis of thermal decomposition kinetics and calculation of activation energy for degradation of polyaniline-graphene oxide composites-synergistic reinforcement on thermal stability. Iran J Chem Chem Eng. 2022;41(3):875–89.

    Google Scholar 

  29. Hayeemasae N, Soontaranon S, Masa A. Comparative investigation of nano-sized silica and micrometer-sized calcium carbonate on structure and properties of natural rubber composites. Polymers. 2024;16(8):1051.

    Article  Google Scholar 

  30. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. pp. 770–778.

  31. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.

    Article  Google Scholar 

  32. Hubbe MA, Grigsby W. From nanocellulose to wood particles: a review of particle size vs. the properties of plastic composites reinforced with cellulose-based entities. Bioresources. 2020;15(1):2030–81.

    Article  Google Scholar 

  33. Hyde A, He J, Cui X, Lua J, Liu L. Effects of microvoids on strength of unidirectional fiber-reinforced composite materials. Compos B Eng. 2020;187: 107844.

    Article  Google Scholar 

  34. Ihueze CC, Okafor CE, Obuka SN, Abdulrahman J, Onwurah UO. Integrity and cost evaluation of natural fibers/HDPE composite tailored for piping applications. J Thermoplast Compos Mater. 2023;36(1):372–98.

    Article  Google Scholar 

  35. Ihueze CC, Oluleye AE, Okafor CE, Obele CM, Abdulrahman J, Obuka S, Ajemba R. Plantain fibre particle reinforced HDPE (PFPRHDPE) for gas line piping design. Int J Plast Technol. 2017;21:370–96.

    Article  Google Scholar 

  36. Ihueze CC, Onwurah UO, Okafor CE, Obuka NS, Okpala CC, Okoli NC, Nwankwo CO, Kingsley-Omoyibo QO. Robust design and setting process and material parameters for electrical cable insulation. Int J Adv Manuf Technol. 2023. https://doi.org/10.1007/s00170-023-11359-4.

    Article  Google Scholar 

  37. Ikechukwu IF, Onwuka OS, Nwogu MC. Production of periwinkle shell reinforced grindstone. J Appl Sci Environ Manage. 2022;26(6):1157–62.

    Google Scholar 

  38. Jang JS. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern. 1993;23(3):665–85.

    Article  Google Scholar 

  39. Jena H, Panigrahi A, Jena M. Mechanical property of jute fibre reinforced polymer composite filled with clam shell filler: a marine waste. Adv Mater Process Technol. 2023;9(1):75–91.

    Google Scholar 

  40. Khan K, Iqbal M, Salami BA, Amin MN, Ahamd I, Alabdullah AA, Arab AMA, Jalal FE. Estimating flexural strength of FRP reinforced beam using artificial neural network and random forest prediction models. Polymers. 2022;14(11):2270.

    Article  Google Scholar 

  41. Khora SS. Seafood-associated shellfish allergy: a comprehensive review. Immunol Invest. 2016;45(6):504–30.

    Article  Google Scholar 

  42. Klomklao S, Poonsin T, Benjakul S, Simpson BK. By products from shellfish harvesting and processing. In: By products from agriculture and fisheries: adding value for food, feed, pharma, and fuels. New Jersey: Wiley; 2019. p. 219–57.

    Chapter  Google Scholar 

  43. Koller D, Friedman N. Probabilistic graphical models: principles and techniques. London: MIT Press; 2009.

    Google Scholar 

  44. Kuldeep B, Ravikumar KP, Guruprasad BS, Tasneem HA, Ashrith HS, Shree N, Ali MM, Bashir MN, Ahamad T. A novel composite connecting rod: study on mechanical and dynamic behaviour through experimental and finite element approach. Composites C Open Access. 2023;12: 100413.

    Article  Google Scholar 

  45. Kumar M, Jena H. Impact of process parameters in drilling of glass epoxy composite with clam shell and cenosphere filler: a comparative analysis. Proc Inst Mech Eng C J Mech Eng Sci. 2024. https://doi.org/10.1177/09544062241235090.

    Article  Google Scholar 

  46. Lakshmi Narayana S, Gopalan V. Mechanical characterization of particle reinforced jute fiber composite and development of hybrid Grey-ANFIS predictive model. Journal of Natural Fibers. 2023;20(1):2167033.

    Article  Google Scholar 

  47. Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil. 2010;37(5):364–76.

    Article  Google Scholar 

  48. Li A, Huang M, Hu D, Tang Z, Xu J, Li Y, Zhang X, Chen X, Wang G. Polydopamine-coated metal-organic framework-based composite phase change materials for photothermal conversion and storage. Chin Chem Lett. 2023;34(8): 107916.

    Article  Google Scholar 

  49. Liang Y, Zhao Q, Li X, Zhang Z, Ren L. Study of the microstructure and mechanical properties of white clam shell. Micron. 2016;87:10–7.

    Article  Google Scholar 

  50. Liu Y, Zhang HT, Tafsirojjaman T, Dogar AUR, AlAjarmeh O, Yue QR, Manalo A. A novel technique to improve the compressive strength and ductility of glass fiber reinforced polymer (GFRP) composite bars. Constr Build Mater. 2022;326: 126782.

    Article  Google Scholar 

  51. Loy CW, Amin Matori K, Lim WF, Schmid S, Zainuddin N, Abdul Wahab Z, Nadakkavil Alassan Z, Mohd Zaid MH. Effects of calcination on the crystallography and nonbiogenic aragonite formation of ark clam shell under ambient condition. Adv Mater Sci Eng. 2016;2016(1):2914368.

    Google Scholar 

  52. Marinkovic FS, Popovic DM, Jovanovic JD, Stankovic BS, Adnadjevic BK. Methods for quantitative determination of filler weight fraction and filler dispersion degree in polymer composites: example of low-density polyethylene and NaA zeolite composite. Appl Phys A. 2019;125:1–9.

    Article  Google Scholar 

  53. Mbakop RS, Lebrun G, Brouillette F. Effect of compaction parameters on preform permeability and mechanical properties of unidirectional flax fiber composites. Compos. B Eng. 2019;176:107083.

    Article  Google Scholar 

  54. McLachlan GJ. Discriminant analysis and statistical pattern recognition. New Jersey: John Wiley & Sons; 2005.

    Google Scholar 

  55. Montgomery DC. Design and Analysis of Experiments. New York: John Wiley and Sons; 2001.

    Google Scholar 

  56. Muthukumar C, Krishnasamy S, Thiagamani SMK, Nagarajan R, Siengchin S. Thermal characterization of the natural fiber-based hybrid composites: an overview. In: Natural fiber-reinforced composites: thermal properties and applications. New Jersey: Wiley; 2022. p. 1–15.

    Google Scholar 

  57. Nandiyanto ABD, Fitriani AF, Pradana RA, Ragadhita R, Azzaoui K, Piantari E. Green innovation in brake pad production: harnessing teak powder and clam shells as sustainable alternatives for subtractive residual waste. Moroccan J Chem. 2024;12(2):714–33.

    Google Scholar 

  58. Nurazzi NM, Asyraf MRM, Khalina A, Abdullah N, Aisyah HA, Rafiqah SA, Sabaruddin FA, Kamarudin SH, Norrrahim MNF, Ilyas RA, Sapuan SM. A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers. 2021;13(4):646.

    Article  Google Scholar 

  59. Nurazzi NM, Khalina A, Sapuan SM, Ilyas RA, Rafiqah SA, Hanafee ZM. Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. J Market Res. 2020;9(2):1606–18.

    Google Scholar 

  60. Odili CC, Philips Gbenebor O, Adekola Haffner H, Oluropo Adeosun S. A morphological characterization of high yield chitin from periwinkle shells. J Cast Mater Eng. 2021;5(4):61–5.

    Google Scholar 

  61. Oghenerukewve PO. Mechanical properties of alkaline modified snail and groundnut shells fillers reinforced glass fiber epoxy composites. 2024. NIPES J Sci Technol Res. https://doi.org/10.5281/zenodo.11017974.

  62. Okafor CE, Ihueze CC. The graft of ANN-FEM technique in macro-mechanics of multi-oriented natural fiber/polyester laminates. Mech Adv Compos Struct. 2021;8(1):51–68.

    Google Scholar 

  63. Okafor CE, Iweriolor S, Ani OI, Ahmad S, Mehfuz S, Ekwueme GO, Chukwumuanya OE, Abonyi SE, Ekengwu IE, Chikelu OP. Advances in machine learning-aided design of reinforced polymer composite and hybrid material systems. Hybrid Adv. 2023;2: 100026.

    Article  Google Scholar 

  64. Okafor CE, Okafor EJ, Obodoeze JJ, Ihueze CC. Characteristics and reliability of polyurethane wood ash composites for packaging and containerisation applications. J Mater Sci Res Rev. 2018;1(3):98–107.

    Google Scholar 

  65. Okafor CE, Okpe DU, Ani OI, Okonkwo UC. Development of carbonized wood/silicon dioxide composite tailored for single-density shoe sole manufacturing. Mater Today Commun. 2022;32: 104184.

    Article  Google Scholar 

  66. Okafor CE, Onovo AC, Ani OI, Obele CM, Dziki D, Ihueze CC, Okonkwo UC. Mathematical study of bio-fibre comminution process as first step towards valorization of post-harvest waste materials. Clean Mater. 2022;4: 100067.

    Article  Google Scholar 

  67. Okafor CE, Onovo AC, Ihueze CC. Predictive energy requirement models in bio-fiber comminution process. SN Appl Sci. 2020;2:1–16.

    Article  Google Scholar 

  68. Okafor CE, Onovo AC, Imoisili PE, Kulkarni KM, Ihueze CC. Optimal route to robust hybridization of banana-coir fiber particulate in polymer matrix for automotive applications. Materialia. 2021;16:101098. https://doi.org/10.1016/j.mtla.2021.101098.

    Article  Google Scholar 

  69. Onuoha C, Onyemaobi OO, Anyakwo CN, Onuegbu GC. Effect of filler content and particle size on the mechanical properties of corn cob powder filled recycled polypropylene composites. Am J Eng Res. 2017;6:72–9.

    Google Scholar 

  70. Oudi AH, Irankhah A. Screening of important factors affecting the process of ammonia synthesis by Plackett–Burman method and process optimization with RSM. Iran J Chem Eng (IJChE). 2022;19(2):3–20.

    Google Scholar 

  71. Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika. 1946;33(4):305–25.

    Article  MathSciNet  Google Scholar 

  72. Pokharel P, Pant B, Pokhrel K, Pant HR, Lim JG, Kim HY, Choi S. Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites. Compos B Eng. 2015;78:192–201.

    Article  Google Scholar 

  73. Praveenkumara J, Madhu P, Yashas Gowda TG, Sanjay MR, Siengchin S. A comprehensive review on the effect of synthetic filler materials on fiber-reinforced hybrid polymer composites. J Textile Inst. 2022;113(7):1231–9.

    Article  Google Scholar 

  74. Qian C, Tan RK, Ye W. Design of architectured composite materials with an efficient, adaptive artificial neural network-based generative design method. Acta Mater. 2022;225: 117548.

    Article  Google Scholar 

  75. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106.

    Article  Google Scholar 

  76. Ravindran L, Sreekala MS, Kumar SA, Thomas S. A comprehensive review on phenol–formaldehyde resin-based composites and foams. Polym Compos. 2022;43(12):8602–21.

    Article  Google Scholar 

  77. Ribeiro GD, Hiranobe CT, da Silva JFR, Torres GB, Paim LL, Job AE, Cabrera FC, dos Santos RJ. Physical–mechanical properties of Chartwell® coupling agent-treated calcium carbonate and silica-reinforced hybrid natural rubber composites. Crystals. 2022;12(11):1552.

    Article  Google Scholar 

  78. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533–6.

    Article  Google Scholar 

  79. Sápi Z, Butler R, Rhead A. Filler materials in composite out-of-plane joints—a review. Compos Struct. 2019;207:787–800.

    Article  Google Scholar 

  80. Sharma A, Kumar SA, Kushvaha V. Effect of aspect ratio on dynamic fracture toughness of particulate polymer composite using artificial neural network. Eng Fract Mech. 2020;228: 106907.

    Article  Google Scholar 

  81. Sharma N, Kumar S, Singh KK. Taguchi’s DOE and artificial neural network analysis for the prediction of tribological performance of graphene nano-platelets filled glass fiber reinforced epoxy composites under the dry sliding condition. Tribol Int. 2022;172: 107580.

    Article  Google Scholar 

  82. Shuaib-babata YL, Ambali IO, Abdulqadir LB, Ibrahim HK, Aremu INA, Ibraheem TO. Production of abrasive sandpaper using periwinkle shells and crab shells. Int J Eng Mater Manuf. 2020;5(2):55–61.

    Google Scholar 

  83. Sibanda NC, Ndlovu LN, Ncube SR, Hlabano N. Development and evaluation of physical and mechanical properties on talc filled sisal/polyester composites. Emerg Trends Chem Eng. 2018;5(2):27–35.

    Google Scholar 

  84. Singh S, Pflug L, Mergheim J, Stingl M. Robust design optimization for enhancing delamination resistance of composites. Int J Numer Meth Eng. 2023;124(6):1381–404.

    Article  MathSciNet  Google Scholar 

  85. Siraj S, Al-Marzouqi AH, Iqbal MZ, Ahmed W. Impact of micro silica filler particle size on mechanical properties of polymeric based composite material. Polymers. 2022;14(22):4830.

    Article  Google Scholar 

  86. Stephen C, Behara SR, Shivamurthy B, Selvam R, Kannan S, Abbadi M. Finite element study on the influence of fiber orientation on the high velocity impact behavior of fiber reinforced polymer composites. Int J Interact Des Manuf (IJIDeM). 2022;16(2):459–68.

    Article  Google Scholar 

  87. Taguchi G. Introduction to quality engineering: designing quality into products and processes. Tokyo: Asian Productivity Organization; 1986.

    Google Scholar 

  88. Tavakoli M, Heydari AA, Zain Al-Thalabi SH. Control charts for exponentially distributed characteristics: SD, ED, ESD with Taguchi’s loss function. Appl Artif Intell. 2024;38(1):2322362.

    Article  Google Scholar 

  89. Umaru HI, Ishiaku US, Yakubu MK, Kogo AA. Effect of particle size on tensile properties and density of Delonix regia seed particles filled unsaturated polyester resin composites. Sci World J. 2022;17(4):507–11.

    Google Scholar 

  90. Umunakwe R, Okoye OC, Nwigwe US, Oyetunji A, Umunakwe IJ. Effects of stirring time and particles preheating on porosity, mechanical properties and microstructure of periwinkle shell-aluminium metal matrix composite (PPS-ALMMC). Ann Fac Eng Hunedoara. 2017;15(3):133.

    Google Scholar 

  91. Vetter J, Beneder S, Kandler M, Feyer F, Körner C, Schmidt M. Impact of particle size distribution in the preform on thermal conductivity, Vickers hardness and tensile strength of copper-infiltrated AISI H11 tool steel. Materials. 2023;16(7):2659.

    Article  Google Scholar 

  92. Wang P, Wang Y, Hong P, Zhou C. Di-aldehyde starch crystal: a novel bio-crosslinker for strengthening the structure and physio-chemical properties of gelatin-based films. Food Biosci. 2021;43: 101308.

    Article  Google Scholar 

  93. Wang WR, Wang WL, Yeh JW. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloy Compd. 2014;589:143–52.

    Article  Google Scholar 

  94. Wu G, Zhang Q, Yang X, Huang Z, Sha W. Effects of particle/matrix interface and strengthening mechanisms on the mechanical properties of metal matrix composites. Compos Interfaces. 2014;21(5):415–29.

    Article  Google Scholar 

  95. Yaashikaa PR, Kumar PS, Karishma SJER. Review on biopolymers and composites—evolving material as adsorbents in removal of environmental pollutants. Environ Res. 2022;212: 113114.

    Article  Google Scholar 

  96. Yadav R, Islam A, Kumar Dwivedi V. Wear and microstructure analysis of aluminium based composite using eggshell and rice husk ash as reinforcement. World J Eng. 2024;21(1):186–93.

    Article  Google Scholar 

  97. Yaro A, Kuburi L, Moshood MA. Influence of Kaolin particulate and Luffa cylindrica fiber on the mechanical properties polyester matrix. Int J Adv Manuf Technol. 2021;116:139–44.

    Article  Google Scholar 

  98. Yohannes B, Gonzalez M, Abebe A, Sprockel O, Nikfar F, Kang S, Cuitino AM. The role of fine particles on compaction and tensile strength of pharmaceutical powders. Powder Technol. 2015;274:372–8.

    Article  Google Scholar 

  99. Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J. 2014;237:411–20.

    Article  Google Scholar 

  100. Zaghloul MMY, Steel K, Veidt M, Heitzmann MT. Wear behaviour of polymeric materials reinforced with man-made fibres: a comprehensive review about fibre volume fraction influence on wear performance. J Reinf Plast Compos. 2022;41(5–6):215–41.

    Article  Google Scholar 

  101. Zaghloul MY, Zaghloul MMY, Zaghloul MMY. Influence of stress level and fibre volume fraction on fatigue performance of glass fibre-reinforced polyester composites. Polymers. 2022;14(13):2662.

    Article  Google Scholar 

  102. Zárate-Ramírez LS, Romero A, Martínez I, Bengoechea C, Partal P, Guerrero A. Effect of aldehydes on thermomechanical properties of gluten-based bioplastics. Food Bioprod Process. 2014;92(1):20–9.

    Article  Google Scholar 

  103. Zhan J, Lu J, Wang D. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Rev Aquac. 2022;14(1):477–88.

    Article  Google Scholar 

  104. Zhao Z, Cao S, Yilmaz E. Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites. Int J Miner Metall Mater. 2023;30(2):236–49.

    Article  Google Scholar 

  105. Zhao C, Goh KL, Lee HP, Yin C, Zhang K, Zhong J. Experimental study and finite element analysis on energy absorption of carbon fiber reinforced composite auxetic structures filled with aluminum foam. Compos Struct. 2023;303: 116319.

    Article  Google Scholar 

  106. Zhou Y, Wu S, Ma Y, Zhang H, Zeng X, Wu F, Liu F, Ryu JE, Guo Z. Recent advances in organic/composite phase change materials for energy storage. ES Energy Environ. 2020;9(12):28–40.

    Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. CCI was responsible for the conceptualization of the topic; article gathering and sorting were carried out by CEO, and OEO; manuscript writing and original drafting and formal analysis were carried out by OEO, CEO; writing of reviews and editing were carried out by CCI, OEO; and CEO led the overall research activity. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Christian Emeka Okafor.

Ethics declarations

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Research Involving Human and /or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihueze, C.C., Okafor, C.E. & Omeiza, O.E. Robust Design and Intelligent Modelling of Organic-Based Composites for Armoury Applications. SN COMPUT. SCI. 5, 832 (2024). https://doi.org/10.1007/s42979-024-03199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-03199-0

Keywords