Abstract
Emerging technologies (ETs), including artificial intelligence (AI), blockchain, non-fungible tokens (NFTs), the Internet of Things (IoT), augmented reality (AR), virtual reality (VR), mixed reality (MR), extended reality (XR), robotics, and 3D printing, have greatly impacted education. While these technologies are commonly used in informal learning, their application in formal education remains under explored. This systematic review addresses this gap by analyzing the effective use of these technologies in formal education. Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and using bibliometric analysis, this research reviewed experimental studies from the Scopus database (2008–2022). Data visualization tools, including RStudio, VOSviewer, Python, and Microsoft Excel, facilitated robust analysis. The study identifies gaps in technology adoption arising from economic status, infrastructure, and digital literacy challenges. It highlights the benefits of mobile apps and Learning Management Systems (LMS) in enhancing information retrieval, communication, and learning support. Challenges include the need for pedagogical skills, ICT competencies, and information literacy. Additionally, the study explores the potential of adaptive learning technologies and personalized learning environments to transform education by tailoring experiences to individual needs. Effective technology integration in education provides valuable insights for educators, policymakers, and researchers, highlighting strategies to overcome existing challenges and improve educational outcomes.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Fig16_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The data used in this research are available upon request. Interested parties can access the dataset by contacting the corresponding author. The dataset includes all relevant documents and information analyzed during the study, ensuring transparency and reproducibility of the research findings. The dataset can be accessed at the following link: https://osf.io/bkzt7/?view_only=1249f34995454824a73ad99df4ba3b58 (12.2 MB).
References
Agbo FJ, Oyelere SS, Suhonen J, Tukiainen M. Scientific production and thematic breakthroughs in smart learning environments: a bibliometric analysis. Smart Learn Environ. 2021;8(1):1–25. https://doi.org/10.1186/S40561-020-00145-4.
Agustin S, Hanesman, Efrizon, Hidayat H. The impact of problem-based learning model with focus group discussion method on students’ learning outcomes in basic vocational subjects. J Hypermedia Technol Enhanced Learn (J-HyTEL). 2024;2(2):182–93. https://doi.org/10.58536/j-hytel.v2i3.135.
Akoyi Y. Using essential eight technologies to advance digital transformation. 2019. https://www.pwc.com/gx/en/services/entrepreneurial-.
Alabi G. Bradford’s law and its application. Int Libr Rev. 1979;11(1):151–8. https://doi.org/10.1016/0020-7837(79)90044-X.
Al-Ansi AM, Jaboob M, Garad A, Al-Ansi A. Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Soc Sci Humanit Open. 2023;8(1): 100532. https://doi.org/10.1016/J.SSAHO.2023.100532.
Al-Mamary YHS. Why do students adopt and use learning management systems?: insights from Saudi Arabia. Int J Inf Manag Data Insights. 2022;2(2): 100088. https://doi.org/10.1016/J.JJIMEI.2022.100088.
Ansori MZ, Faiza D, Thamrin, Efrizon. Development of digital circuits learning media using articulate storyline with the 4D model. J Hypermedia Technol Enhanced Learn (J-HyTEL). 2024;2(3):338–51. https://doi.org/10.58536/j-hytel.v2i3.145.
Arora S, Bhatia MPS. Challenges and opportunities in biometric security: a survey. Inf Secur J A Glob Perspect. 2021;31(1):28–48. https://doi.org/10.1080/19393555.2021.1873464.
Barrot JS, Llenares II, del Rosario LS. Students’ online learning challenges during the pandemic and how they cope with them: the case of the Philippines. Educ Inf Technol. 2021;26(6):7321. https://doi.org/10.1007/S10639-021-10589-X.
Basilotta-Gómez-Pablos V, Matarranz M, Casado-Aranda LA, Otto A. Teachers’ digital competencies in higher education: a systematic literature review. Int J Educ Technol High Educ. 2022;19(1):1–16. https://doi.org/10.1186/S41239-021-00312-8.
Benitti FBV. Exploring the educational potential of robotics in schools: a systematic review. Comput Educ. 2012;58(3):978–88. https://doi.org/10.1016/J.COMPEDU.2011.10.006.
Binyamin SS, Rutter MJ, Smith S. Extending the technology acceptance model to understand students’ use of learning management systems in Saudi higher education. Int J Emerg Technol Learn (IJET). 2019;14(03):4–21. https://doi.org/10.3991/IJET.V14I03.9732.
Bogliacino F. A critical review of the technology-inequality debate. Suma de Negocios. 2014;5(12):124–35. https://doi.org/10.1016/S2215-910X(14)70034-5.
Bojic L. Metaverse through the prism of power and addiction: what will happen when the virtual world becomes more attractive than reality? Eur J Futures Res. 2022;10(1):1–24. https://doi.org/10.1186/S40309-022-00208-4.
Bradley VM. Learning management system (LMS) use with online instruction. Int J Technol Educ. 2021;4(1):68–92. https://doi.org/10.46328/IJTE.36.
Brookes BC. Bradford’s law and the bibliography of science. Nature. 1969;224(5223):953–6. https://doi.org/10.1038/224953a0.
Cabero-Almenara J, Romero-Tena R, Palacios-Rodríguez A. Evaluation of teacher digital competence frameworks through expert judgement: the use of the expert competence coefficient. J New Approaches Educ Res. 2020;9(2):275–93. https://doi.org/10.7821/NAER.2020.7.578.
Chaudhry MA, Kazim E. Artificial intelligence in education (AIEd): a high-level academic and industry note 2021. AI Ethics. 2021;2(1):157–65. https://doi.org/10.1007/S43681-021-00074-Z.
Chen X, Xie H, Li Q. Vision, status, and topics of X reality in education. Comput Educ X Real. 2022;1: 100001. https://doi.org/10.1016/J.CEXR.2022.100001.
Chiu TKF, Xia Q, Zhou X, Chai CS, Cheng M. Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Comput Educ Artif Intell. 2023;4: 100118. https://doi.org/10.1016/J.CAEAI.2022.100118.
Coman C, Țîru LG, Meseșan-Schmitz L, Stanciu C, Bularca MC. Online teaching and learning in higher education during the coronavirus pandemic: students’ perspective. Sustainability. 2020;12(24):10367. https://doi.org/10.3390/SU122410367.
Data Reportal. DataReportal—global digital insights. 2023. https://datareportal.com/. Accessed 13 Jul 2023.
Demissie EB, Labiso TO, Thuo MW. Teachers’ digital competencies and technology integration in education: insights from secondary schools in Wolaita Zone, Ethiopia. Soc Sci Humanit Open. 2022;6(1): 100355. https://doi.org/10.1016/J.SSAHO.2022.100355.
Dichev C, Dicheva D. Gamifying education: what is known, what is believed and what remains uncertain: a critical review. Int J Educ Technol High Educ. 2017;14(1):1–36. https://doi.org/10.1186/S41239-017-0042-5.
Ding J, Nemati M, Ranaweera C, Choi J. IoT connectivity technologies and applications: a survey. IEEE Access. 2020;8:67646–73. https://doi.org/10.1109/ACCESS.2020.2985932.
Dogruer N, Eyyam R, Menevis I. The use of the Internet for educational purposes. Procedia Soc Behav Sci. 2011;28:606–11. https://doi.org/10.1016/J.SBSPRO.2011.11.115.
Doub AE, Levin A, Heath CE, Le Vangie K. Mobile appetite: consumer attitudes towards and use of mobile technology in the context of eating behaviour. J Direct Data Digit Mark Pract. 2015;17(2):114–29. https://doi.org/10.1057/DDDMP.2015.44.
El Koshiry A, Eliwa E, Abd El-Hafeez T, Shams MY. Unlocking the power of blockchain in education: an overview of innovations and outcomes. Blockchain Res Appl. 2023;4(4):100165. https://doi.org/10.1016/J.BCRA.2023.100165.
Elaish MM, Shuib L, Abdul Ghani N, Yadegaridehkordi E, Alaa M. Mobile learning for english language acquisition: taxonomy, challenges, and recommendations. IEEE Access. 2017;5:19033–47. https://doi.org/10.1109/ACCESS.2017.2749541.
Elrefaey O, Ahmed S, Ahmad I, El-sayegh S. Impacts of COVID-19 on the use of digital technology in construction projects in the UAE. Buildings. 2022;12(4):489. https://doi.org/10.3390/BUILDINGS12040489.
Engzell P, Frey A, Verhagen MD. Learning loss due to school closures during the COVID-19 pandemic. Proc Natl Acad Sci USA. 2021;118(17): e2022376118. https://doi.org/10.1073/PNAS.2022376118.
Essel HB, Vlachopoulos D, Tachie-Menson A, Johnson EE, Baah PK. The impact of a virtual teaching assistant (chatbot) on students’ learning in Ghanaian higher education. Int J Educ Technol High Educ. 2022;19(1):1–19. https://doi.org/10.1186/S41239-022-00362-6.
Falloon G. From digital literacy to digital competence: the teacher digital competency (TDC) framework. Educ Technol Res Dev. 2020;68(5):2449–72. https://doi.org/10.1007/S11423-020-09767-4.
Gill SS, Xu M, Patros P, Wu H, Kaur R, Kaur K, Fuller S, Singh M, Arora P, Parlikad AK, Stankovski V, Abraham A, Ghosh SK, Lutfiyya H, Kanhere SS, Bahsoon R, Rana O, Dustdar S, Sakellariou R, et al. Transformative effects of ChatGPT on modern education: emerging Era of AI Chatbots. Internet Things Cyber Phys Syst. 2024;4:19–23. https://doi.org/10.1016/J.IOTCPS.2023.06.002.
Gillett-Swan J. The challenges of online learning: supporting and engaging the isolated learner. J Learn Des. 2017;10(1):20. https://doi.org/10.5204/jld.v9i3.293.
Giurgiu L. Microlearning an evolving elearning trend. Sci Bull. 2017;22(1):18–23. https://doi.org/10.1515/BSAFT-2017-0003.
Gogus A, Saygın Y. Privacy perception and information technology utilization of high school students. Heliyon. 2019;5(5):e01614. https://doi.org/10.1016/J.HELIYON.2019.E01614.
Gupta Y, Khan FM, Agarwal S. Exploring factors influencing mobile learning in higher education—a systematic review. Int J Interact Mob Technol. 2021;15(12):140–57. https://doi.org/10.3991/ijim.v15i12.22503.
Haelermans C, Korthals R, Jacobs M, de Leeuw S, Vermeulen S, van Vugt L, Aarts B, Prokic-Breuer T, van der Velden R, van Wetten S, de Wolf I. Sharp increase in inequality in education in times of the COVID-19 pandemic. PLoS ONE. 2022;17(2): e0261114. https://doi.org/10.1371/JOURNAL.PONE.0261114.
Hamilton D, McKechnie J, Edgerton E, Wilson C. Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. J Comput Educ. 2021;8(1):1–32. https://doi.org/10.1007/S40692-020-00169-2.
Harris A, Cooper M. Mobile phones: impacts, challenges, and predictions. Hum Behav Emerg Technol. 2019;1(1):15–7. https://doi.org/10.1002/HBE2.112.
Hennessy S, D’Angelo S, McIntyre N, Koomar S, Kreimeia A, Cao L, Brugha M, Zubairi A. Technology use for teacher professional development in low- and middle-income countries: a systematic review. Comput Educ Open. 2022;3: 100080. https://doi.org/10.1016/J.CAEO.2022.100080.
Hernandez-de-Menendez M, Escobar Díaz CA, Morales-Menendez R. Educational experiences with Generation Z. Int J Interact Des Manuf. 2020;14(3):847–59. https://doi.org/10.1007/S12008-020-00674-9.
Hoel T, Chen W. Privacy and data protection in learning analytics should be motivated by an educational maxim—towards a proposal. Res Pract Technol Enhanc Learn. 2018;13(1):1–14. https://doi.org/10.1186/S41039-018-0086-8.
Hosokawa R, Katsura T. Association between mobile technology use and child adjustment in early elementary school age. PLoS ONE. 2018;13(7): e0199959. https://doi.org/10.1371/JOURNAL.PONE.0199959.
Huda M, Maseleno A, Atmotiyoso P, Siregar M, Ahmad R, Jasmi KA, Muhamad NHN, Mustari MI, Basiron B. Big data emerging technology: insights into innovative environment for online learning resources. Int J Emerg Technol Learn (IJET). 2018;13(01):23–36. https://doi.org/10.3991/IJET.V13I01.6990.
Hwang GJ, Chien SY. Definition, roles, and potential research issues of the Metaverse in education: an artificial intelligence perspective. Comput Educ Artif Intell. 2022;3: 100082. https://doi.org/10.1016/J.CAEAI.2022.100082.
Ifenthaler D. Learning management system. In: Encyclopedia of the sciences of learning. Boston: Springer; 2012. p. 1925–7. https://doi.org/10.1007/978-1-4419-1428-6_187.
Ingkavara T, Panjaburee P, Srisawasdi N, Sajjapanroj S. The use of a personalized learning approach to implementing self-regulated online learning. Comput Educ Artif Intell. 2022;3: 100086. https://doi.org/10.1016/J.CAEAI.2022.100086.
Javaid M, Haleem A. Virtual reality applications toward medical field. Clin Epidemiol Glob Health. 2020;8(2):600–5. https://doi.org/10.1016/J.CEGH.2019.12.010.
Joy A, Zhu Y, Peña C, Brouard M. Digital future of luxury brands: Metaverse, digital fashion, and non-fungible tokens. Strateg Change. 2022;31(3):337–43. https://doi.org/10.1002/JSC.2502.
Kennedy AI, Mejía-Rodríguez AM, Strello A. Inequality in remote learning quality during COVID-19: student perspectives and mitigating factors. Large-Scale Assess Educ. 2022;10(1):1–31. https://doi.org/10.1186/S40536-022-00143-7.
Kennedy GE, Judd TS, Churchward A, Gray K, Krause KL. First year students’ experiences with technology: are they really digital natives? Australas J Educ Technol. 2008;24(1):108–22. https://doi.org/10.1442/AJET.1233.
Klopfer E, Squire K. Environmental detectives-the development of an augmented reality platform for environmental simulations. Educ Technol Res Dev. 2008;56(2):203–28. https://doi.org/10.1007/S11423-007-9037-6.
Leahy SM, Holland C, Ward F. The digital frontier: envisioning future technologies impact on the classroom. Futures. 2019;113: 102422. https://doi.org/10.1016/J.FUTURES.2019.04.009.
Lee C, Kwon O, Kim M, Kwon D. Early identification of emerging technologies: a machine learning approach using multiple patent indicators. Technol Forecast Soc Chang. 2018;127:291–303. https://doi.org/10.1016/J.TECHFORE.2017.10.002.
Lee H, Lee B, Yang H, Kim J, Kim S, Shin W, Shim B, Poor HV. Towards 6G hyper-connectivity: vision, challenges, and key enabling technologies. J Commun Netw. 2023. https://doi.org/10.23919/JCN.2023.000006.
Leong K, Sung A, Au D, Blanchard C. A review of the trend of microlearning. J Work Appl Manag. 2021;13(1):88–102. https://doi.org/10.1108/JWAM-10-2020-0044.
Li Y, Dai J, Cui L. The impact of digital technologies on economic and environmental performance in the context of industry 4.0: a moderated mediation model. Int J Prod Econ. 2020;229:107777. https://doi.org/10.1016/J.IJPE.2020.107777.
Lim WM. Philosophy of science and research paradigm for business research in the transformative age of automation, digitalization, hyperconnectivity, obligations, globalization and sustainability. J Trade Sci. 2023;11(2/3):3–30. https://doi.org/10.1108/JTS-07-2023-0015.
Lim WM, Mohamed Jasim K, Das M. Augmented and virtual reality in hotels: Impact on tourist satisfaction and intention to stay and return. Int J Hosp Manag. 2024;116: 103631. https://doi.org/10.1016/J.IJHM.2023.103631.
Lo CK. What is the impact of ChatGPT on education? A rapid review of the literature. Educ Sci. 2023;13(4):410. https://doi.org/10.3390/EDUCSCI13040410/S1.
Lynn T, Rosati P, Conway E, Curran D, Fox G, O’Gorman C. Digital education. Digit Towns. 2022. https://doi.org/10.1007/978-3-030-91247-5_7.
M CS, Kumar PD, Biradar BS. Bradford’s law: identification of the core journals in the field of Indian chemical science literature. SSRN Electron J. 2018. https://doi.org/10.2139/SSRN.3400961.
Machkour B, Abriane A. Industry 4.0 and its implications for the financial sector. Procedia Comput Sci. 2020;177:496–502. https://doi.org/10.1016/J.PROCS.2020.10.068.
Malinverni L, Valero C, Schaper MM, de la Cruz IG. Educational robotics as a boundary object: towards a research agenda. Int J Child Comput Interact. 2021;29: 100305. https://doi.org/10.1016/J.IJCCI.2021.100305.
Manca F, Sivakumar A, Polak JW. The effect of social influence and social interactions on the adoption of a new technology: the use of bike sharing in a student population. Transp Res Part C Emerg Technol. 2019;105:611–25. https://doi.org/10.1016/J.TRC.2019.02.010.
Marcus M, Haden CA, Uttal DH. Promoting children’s learning and transfer across informal science, technology, engineering, and mathematics learning experiences. J Exp Child Psychol. 2018;175:80–95. https://doi.org/10.1016/J.JECP.2018.06.003.
Marshall S. A handbook for teaching and learning in higher education; enhancing academic practice. n.d. https://www.routledge.com/A-Handbook-for-Teaching-and-Learning-in-Higher-Education-Enhancing-Academic/Marshall/p/book/9780367200824. Accessed 13 Jul 2023.
Martin F, Dennen VP, Bonk CJ. A synthesis of systematic review research on emerging learning environments and technologies. Educ Technol Res Dev. 2020;68(4):1613–33. https://doi.org/10.1007/S11423-020-09812-2.
Massaoudi M, Abu-Rub H, Refaat SS, Chihi I, Oueslati FS. Deep learning in smart grid technology: a review of recent advancements and future prospects. IEEE Access. 2021;9:54558–78. https://doi.org/10.1109/ACCESS.2021.3071269.
McKinsey. Mind the gap: COVID-19 is widening racial disparities in learning, so students need help and a chance to catch up. 2023. https://www.mckinsey.com/industries/public-sector/our-insights/covid-19-and-learning-loss-disparities-grow-and-students-need-help. Accessed 13 Jul 2023.
Mills LA, Knezek G, Khaddage F. Information seeking, information sharing, and going mobile: three bridges to informal learning. Comput Hum Behav. 2014;32:324–34. https://doi.org/10.1016/J.CHB.2013.08.008.
Mishra SK, Sahoo SK, Swain CK. A systematic review on federated learning in edge-cloud continuum. SN Comput Sci. 2024;5:887. https://doi.org/10.1007/s42979-024-03235-z.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339(7716):332–6. https://doi.org/10.1136/BMJ.B2535.
Moore K, Jones C, Frazier RS. Engineering education for Generation Z. Am J Eng Educ (AJEE). 2017;8(2):111–26. https://doi.org/10.19030/ajee.v8i2.10067.
Nayak R, Yassin H, Ramesh G. Inclusive learning and assessment in the era of AI. SN Comput Sci. 2024;5:975. https://doi.org/10.1007/s42979-024-03346-7.
Okonkwo CW, Ade-Ibijola A. Chatbots applications in education: a systematic review. Comput Educ Artif Intell. 2021;2:100033. https://doi.org/10.1016/J.CAEAI.2021.100033.
Ozili PK. Impact of digital finance on financial inclusion and stability. Borsa Istanb Rev. 2018;18(4):329–40. https://doi.org/10.1016/J.BIR.2017.12.003.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021. https://doi.org/10.1136/BMJ.N71.
Pan Z, Cheok AD, Yang H, Zhu J, Shi J. Virtual reality and mixed reality for virtual learning environments. Comput Graph. 2006;30(1):20–8. https://doi.org/10.1016/J.CAG.2005.10.004.
Pereira SW, Fishman EK, Rowe SP. The future is now: how technology and entertainment are transforming education in the artificial intelligence era. J Am Coll Radiol. 2022;19(9):1077–8. https://doi.org/10.1016/J.JACR.2022.06.015.
Peritz BC. A bradford distribution for bibliometrics. Scientometrics. 1990;18(5):323–9. https://doi.org/10.1007/BF02020148.
Pigott TD, Polanin JR. Methodological guidance paper: high-quality meta-analysis in a systematic review. Rev Educ Res. 2019;90(1):24–46. https://doi.org/10.3102/0034654319877153.
Popov VV, Kudryavtseva EV, Katiyar NK, Shishkin A, Stepanov SI, Goel S. Industry 4.0 and digitalisation in healthcare. Materials. 2022;15(6):2140. https://doi.org/10.3390/MA15062140.
Potkonjak V, Gardner M, Callaghan V, Mattila P, Guetl C, Petrović VM, Jovanović K. Virtual laboratories for education in science, technology, and engineering: a review. Comput Educ. 2016;95:309–27. https://doi.org/10.1016/J.COMPEDU.2016.02.002.
Pranckutė R. Web of science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications. 2021;9(1):12. https://doi.org/10.3390/PUBLICATIONS9010012.
Prasetya F, Fortuna A, Samala AD, Fajri BR, Efendi F, Nyamapfene A. Effectiveness of distance learning computer numerical control based on virtual laboratory using a Metaverse platform to improve students’ cognitive ability and practice skills. Int J Interact Mob Technol (IJIM). 2023;17(24):4–21. https://doi.org/10.3991/IJIM.V17I24.45019.
Prior DD, Mazanov J, Meacheam D, Heaslip G, Hanson J. Attitude, digital literacy and self-efficacy: flow-on effects for online learning behavior. Internet High Educ. 2016;29:91–7. https://doi.org/10.1016/J.IHEDUC.2016.01.001.
Quach S, Thaichon P, Martin KD, Weaven S, Palmatier RW. Digital technologies: tensions in privacy and data. J Acad Mark Sci. 2022;50(6):1299–323. https://doi.org/10.1007/S11747-022-00845-Y.
Rahmadika S, Agustiarmi W, Faiza D, Jaya P, Thamrin, Fikri R. A concurrent perspective on collaborative learning with smart contracts. In: 6th International seminar on research of information technology and intelligent systems, ISRITI 2023—proceeding. 2023. Pp. 8–13. https://doi.org/10.1109/ISRITI60336.2023.10468004
Ramani S. The internet and education in the developing world—hopes and reality. Smart Learn Environ. 2015;2(1):1–16. https://doi.org/10.1186/S40561-015-0015-X.
Ramesh UV, Harini A, Gowri D, Durga KV, Druvitha P, Siva Kumar K. Metaverse: future of the internet. Int J Res Public Rev. 2022;3(2):93–7.
Rietsche R, Dremel C, Bosch S, Steinacker L, Meckel M, Leimeister JM. Quantum computing. Electron Mark. 2022;32(4):2525–36. https://doi.org/10.1007/S12525-022-00570-Y.
Saeed SA, Masters RMR. Disparities in health care and the digital divide. Curr Psychiatry Rep. 2021;23(9):1. https://doi.org/10.1007/S11920-021-01274-4.
Samala AD, Amanda M. Immersive learning experience design (ILXD): augmented reality mobile application for placing and interacting with 3D learning objects in engineering education. Int J Interact Mob Technol (IJIM). 2023;17(05):22–35. https://doi.org/10.3991/IJIM.V17I05.37067.
Samala AD, Bojic L, Bekiroğlu D, Watrianthos R, Hendriyani Y. Microlearning: transforming education with bite-sized learning on the go—insights and applications. Int J Interact Mob Technol (IJIM). 2023;17(21):4–24. https://doi.org/10.3991/IJIM.V17I21.42951.
Samala AD, Rawas S, Wang T. Unveiling the landscape of generative artificial intelligence in education: a comprehensive taxonomy of applications, challenges, and future prospects. Educ Inf Technol. 2024. https://doi.org/10.1007/s10639-024-12936-0.
Samala AD, Marta R, Anori S, Indarta Y. Online learning applications for students: opportunities & challenges. Educ Admin Theory Pract. 2022;28(03):1–12. https://doi.org/10.17762/KUEY.V28I03.409.
Samala AD, Mhlanga D, Bojic L, Howard NJ, Coelho DP. Blockchain technology in education: opportunities, challenges, and beyond. Int J Interact Mob Technol (IJIM). 2024;18(01):20–42. https://doi.org/10.3991/IJIM.V18I01.46307.
Samala AD, Ranuharja F, Fajri BR, Indarta Y, Agustiarmi W. ViCT-virtual campus tour environment with spherical panorama: a preliminary exploration. Int Jo Interact Mob Technol. 2022;16(16):205–25.
Samala AD, Rawas S. Generative AI as virtual healthcare assistant for enhancing patient care quality. Int J Online Biomed Eng (IJOE). 2024;20(05):174–87. https://doi.org/10.3991/IJOE.V20I05.45937.
Samala AD, Usmeldi, Taali, Ambiyar, Bojic L, Indarta Y, Tsoy D, Denden M, Tas N, Dewi IP. Metaverse technologies in education: a systematic literature review using PRISMA. Int J Emerg Technol Learn (IJET). 2023;18(05):231–52. https://doi.org/10.3991/ijet.v18i05.35501.
Samala AD, Usmeldi T, Daineko Y, Indarta Y, Nando YA, Anwar M, Jaya P, Almasri. Global publication trends in augmented reality and virtual reality for learning: the last twenty-one years. Int J Eng Pedag (IJEP). 2023;13(2):109–28. https://doi.org/10.3991/IJEP.V13I2.35965.
Samala AD, Usmeldi T, Indarta Y, Apdoludin, Hakiki M, Leong K. Top 10 most-cited articles concerning blended learning for introductory algorithms and programming: a bibliometric analysis and overview. Int J Interact Mob Technol. 2023;17(5):57–70. https://doi.org/10.3991/ijim.v17i05.36503.
Schelly C, Anzalone G, Wijnen B, Pearce JM. Open-source 3-D printing technologies for education: bringing additive manufacturing to the classroom. J Vis Lang Comput. 2015;28:226–37. https://doi.org/10.1016/J.JVLC.2015.01.004.
Shemshack A, Spector JM. A systematic literature review of personalized learning terms. Smart Learn Environ. 2020;7(1):1–20. https://doi.org/10.1186/S40561-020-00140-9.
Shorey S, Chan V, Rajendran P, Ang E. Learning styles, preferences and needs of generation Z healthcare students: scoping review. Nurse Educ Pract. 2021;57: 103247. https://doi.org/10.1016/J.NEPR.2021.103247.
Soomro KA, Kale U, Curtis R, Akcaoglu M, Bernstein M. Digital divide among higher education faculty. Int J Educ Technol Higher Educ. 2020;17(1):1–16. https://doi.org/10.1186/S41239-020-00191-5.
de Souza ASC, Debs L. Concepts, innovative technologies, learning approaches and trend topics in education 4.0: a scoping literature review. Soc Sci Humanit Open. 2024;9:100902. https://doi.org/10.1016/J.SSAHO.2024.100902.
Su J, Yang W. Unlocking the power of ChatGPT: a framework for applying generative AI in education. ECNU Rev Educ. 2023. https://doi.org/10.1177/20965311231168423.
Sung YT, Chang KE, Liu TC. The effects of integrating mobile devices with teaching and learning on students’ learning performance: a meta-analysis and research synthesis. Comput Educ. 2016;94:252–75. https://doi.org/10.1016/J.COMPEDU.2015.11.008.
Swartz MK. The PRISMA statement: a guideline for systematic reviews and meta-analyses. J Pediatr Health Care. 2011;25(1):1–2. https://doi.org/10.1016/j.pedhc.2010.09.006.
Sya’ban AN, Faiza D, Thamrin, Jasril IR. “METRIKA”: electronics trainer media for supporting learning in the application of Ohm’s law and Kirchhoff’s law. J Hypermedia Technol Enhanced Learn (J-HyTEL). 2024;2(1):63–79. https://doi.org/10.58536/j-hytel.v2i1.112.
Tabuenca B, Uche-Soria M, Greller W, Hernández-Leo D, Balcells-Falgueras P, Gloor P, Garbajosa J. Greening smart learning environments with artificial intelligence of things. Internet Things. 2024;25: 101051. https://doi.org/10.1016/J.IOT.2023.101051.
Time spent using smartphones (2023 statistics). 2023. https://explodingtopics.com/blog/smartphone-usage-stats. Accessed 13 Jul 2023.
Tolentino L, Birchfield D, Megowan-Romanowicz C, Johnson-Glenberg MC, Kelliher A, Martinez C. Teaching and learning in the mixed-reality science classroom. J Sci Educ Technol. 2009;18(6):501–17. https://doi.org/10.1007/S10956-009-9166-2.
Vlachopoulos D, Makri A. The effect of games and simulations on higher education: a systematic literature review. Int J Educ Technol High Educ. 2017;14(1):1–33. https://doi.org/10.1186/S41239-017-0062-1.
Wan J, Tang S, Yan H, Li D, Wang S, Vasilakos AV. Cloud robotics: current status and open issues. IEEE Access. 2016;4:2797–807. https://doi.org/10.1109/ACCESS.2016.2574979.
Waycott J, Bennett S, Kennedy G, Dalgarno B, Gray K. Digital divides? Student and staff perceptions of information and communication technologies. Comput Educ. 2010;54(4):1202–11. https://doi.org/10.1016/J.COMPEDU.2009.11.006.
Winter E, Costello A, O’Brien M, Hickey G. Teachers’ use of technology and the impact of Covid-19. Ir EducStud. 2021;40(2):235–46. https://doi.org/10.1080/03323315.2021.1916559.
Wu M, Yu Q, Li SL, Zhang L. Geographic and gender disparities in global education achievement during the COVID-19 pandemic. Int J Appl Earth Obs Geoinf. 2022;111: 102850. https://doi.org/10.1016/J.JAG.2022.102850.
Wu WH, Wu Y-CJ, Chen CY, Kao HY, Lin CH, Huang SH. Review of trends from mobile learning studies: a meta-analysis. Comput Educ. 2012;59(2):817–27. https://doi.org/10.1016/J.COMPEDU.2012.03.016.
Yanto DTP, Ganefri, Hastuti, Candra O, Kabatiah M, Andrian, Zaswita H. The affecting factors of students’ attitudes toward the use of a virtual laboratory: a study in industrial electrical engineering. Int J Online Biomed Eng (IJOE). 2023;19(13):4–16. https://doi.org/10.3991/IJOE.V19I13.41219.
Yu W, Zhuang F, He Q, Shi Z. Learning deep representations via extreme learning machines. Neurocomputing. 2015;149(Part A):308–15. https://doi.org/10.1016/J.NEUCOM.2014.03.077.
Yuan YP, Wei-Han Tan G, Ooi KB, Lim WL. Can COVID-19 pandemic influence experience response in mobile learning? Telematics Inform. 2021;64(April): 101676. https://doi.org/10.1016/j.tele.2021.101676.
Yusmaningsih Y, Delianti VI, Mursyida L, Marta R. Development of interactive learning media based on motion graphic animation for basic photography subject. J Hypermedia Technol Enhanced Learn (J-HyTEL). 2024;2(3):304–19. https://doi.org/10.58536/j-hytel.v2i3.146.
Zhai X. ChatGPT user experience: implications for education. SSRN Electron J. 2022. https://doi.org/10.2139/SSRN.4312418.
Zhai X, Jackson DF. A pedagogical framework for mobile learning in science education. Int Encycl Educ Fourth Ed. 2023. https://doi.org/10.1016/B978-0-12-818630-5.13037-4.
Ziker C, Truman B, Dodds H. Cross reality (XR): challenges and opportunities across the spectrum. Innov Learn Environ STEM High Educ. 2021. https://doi.org/10.1007/978-3-030-58948-6_4.
Funding
This work was funded by the Institute for Research and Community Service (Indonesia: Lembaga Penelitian dan Pengabdian Kepada Masyarakat or LPPM) Universitas Negeri Padang, under contract number 1766/UN35.15/LT/2024.
Author information
Authors and Affiliations
Contributions
Agariadne Dwinggo Samala: Conceptualization, methodology, visualization, formal analysis, supervision, writing—original draft, writing—review and editing, funding acquisition. Soha Rawas: Formal analysis, validation, writing—review and editing. Santiago Criollo-C: Data curation, formal analysis, writing—review and editing. Ljubisa Bojic: Data curation, validation, writing—review and editing. Febri Prasetya: Investigation, resources, writing—review and editing. Fadhli Ranuharja: Data Curation, formal analysis, writing—review and editing. Rizkayeni Marta: Writing—review and editing.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Ethical approval
This study was exempt from ethics approval because it did not involve human or animal subjects. The data used in this study were publicly available and did not require informed consent from participants.
Informed consent
This study did not require informed consent from participants.
Declaration of generative AI and AI-assisted technologies in the writing process
During the preparation of this work, the author(s) used OpenAI’s ChatGPT to improve the readability and language of the manuscript. After using this tool, the author(s) carefully reviewed and edited the content as needed and take(s) full responsibility for the content of the published article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A. Emerging Technologies for Education: A Comprehensive Exploration
Appendix A. Emerging Technologies for Education: A Comprehensive Exploration
![figure a](http://media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs42979-024-03538-1/MediaObjects/42979_2024_3538_Figa_HTML.png)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Samala, A.D., Rawas, S., Criollo-C, S. et al. Emerging Technologies for Global Education: A Comprehensive Exploration of Trends, Innovations, Challenges, and Future Horizons. SN COMPUT. SCI. 5, 1175 (2024). https://doi.org/10.1007/s42979-024-03538-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42979-024-03538-1