Skip to main content

Advertisement

Log in

Collation of a Few Retinal Vessel Segmentation Techniques: Is the Problem Solved?

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Morphological features of retinal blood vessels are used to diagnose and stage many ophthalmic disorders. Automated segmentation of retinal blood vessels can reduce the labor as well as the cost of the treatment process. Accurate segmentation around the optic disc, lesion area, vessel crossovers and bifurcations, handling central light reflex, and identification of minor vessels in the low contrast regions are some of the challenges faced in the robust segmentation of retinal vessels. Of these, some challenges have been addressed and some still need significant attention to be resolved. Although various techniques cater to different subsets of challenges, no single approach exists that has successfully addressed all the challenges. In this work we critically analyze six segmentation techniques, presenting their strengths and weaknesses. The advantage of this analysis is that the flaws in individual methods can be worked on to improve them individually and the strengths of different methods could be coupled to yield a more robust segmentation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the datasets used in this study are publicly available and can be accessed through the references provided in the manuscript.

References

  1. Zhou L, Rzeszotarski MS, Singerman LJ, Chokreff JM. The detection and quantification of retinopathy using digital angiograms. IEEE Trans Med Imaging. 1994;13(4):619–26.

    Article  Google Scholar 

  2. Stanton AV, Wasan B, Cerutti A, Ford S, Marsh R, Sever PP, Thom SA, Hughes AD. Vascular network changes in the retina with age and hypertension. J Hypertens. 1995;13(12 Pt 2):1724–8.

    Google Scholar 

  3. Becker DE, Can A, Turner JN, Tanenbaum HL, Roysam B. Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination. IEEE Trans Biomed Eng. 1998;45(1):105–18.

    Article  Google Scholar 

  4. Tuyet VTH, Binh NT. Improving retinal vessels segmentation via deep learning in salient region. SN Comput Sci. 2020;1(5):248.

    Article  Google Scholar 

  5. Kar MK, Nath MK. Efficient segmentation of vessels and disc simultaneously using multi-channel generative adversarial network. SN Comput Sci. 2024;5(3):288.

    Article  MATH  Google Scholar 

  6. Verma PK, Kaur J, Singh NP. An intelligent approach for retinal vessels extraction based on transfer learning. SN Comput Sci. 2024;5(8):1072.

    Article  MATH  Google Scholar 

  7. Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging. 2007;26(10):1357–65.

    Article  MATH  Google Scholar 

  8. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23(4):501–9.

    Article  Google Scholar 

  9. Soares JV, Leandro JJ, Cesar RM, Jelinek HF, Cree MJ. Retinal vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE Trans Med Imaging. 2006;25(9):1214–22.

    Article  Google Scholar 

  10. Marín D, Aquino A, Gegúndez-Arias ME, Bravo JM. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging. 2010;30(1):146–58.

    Article  Google Scholar 

  11. Roychowdhury S, Koozekanani DD, Parhi KK. Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Health Inform. 2014;19(3):1118–28.

    MATH  Google Scholar 

  12. Aslani S, Sarnel H. A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed Signal Process Control. 2016;30:1–12.

    Article  Google Scholar 

  13. Zhao J, Yang J, Ai D, Song H, Jiang Y, Huang Y, Zhang L, Wang Y. Automatic retinal vessel segmentation using multi-scale superpixel chain tracking. Digit Signal Process. 2018;81:26–42.

    Article  Google Scholar 

  14. Mou L, Chen L, Cheng J, Gu Z, Zhao Y, Liu J. Dense dilated network with probability regularized walk for vessel detection. IEEE Trans Med Imaging. 2020;39(5):1392–403.

    Article  MATH  Google Scholar 

  15. Li K, Qi X, Luo Y, Yao Z, Zhou X, Sun M. Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE J Biomed Health Inform. 2020;25(6):2071–81.

    Article  Google Scholar 

  16. Li X, Jiang Y, Li M, Yin S. Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans Ind Inform. 2021;17(3):1958–67.

    Article  MATH  Google Scholar 

  17. Zhang Y, He M, Chen Z, Hu K, Li X, Gao X. Bridge-net: context-involved u-net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Syst Appl. 2022;195: 116526.

    Article  Google Scholar 

  18. Lin J, Huang X, Zhou H, Wang Y, Zhang Q. Stimulus-guided adaptive transformer network for retinal blood vessel segmentation in fundus images. Med Image Anal. 2023;89: 102929.

    Article  Google Scholar 

  19. Pallavi Basumatary B, Shukla R, Kumar R, Das B, Sahani AK. A deep learning-based system for detecting anemia from eye conjunctiva images taken from a smartphone. IETE Tech Rev. 2024;41(3):274–86.

    Article  MATH  Google Scholar 

  20. Jiang X, Mojon D. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell. 2003;25(1):131–7.

    Article  MATH  Google Scholar 

  21. Mendonca AM, Campilho A. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging. 2006;25(9):1200–13.

    Article  MATH  Google Scholar 

  22. Budai A, Michelson G, Hornegger J. Multiscale blood vessel segmentation in retinal fundus images. In: Bildverarbeitung Für die Medizin, pp. 261–265. 2010.

  23. Palomera-Perez MA, Martinez-Perez ME, Benitez-Perez H, Ortega-Arjona JL. Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans Inform Technol Biomed. 2009;14(2):500–6.

    Article  MATH  Google Scholar 

  24. Nguyen UTV, Bhuiyan A, Park LA, Ramamohanarao K. An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 2013;46(3):703–15.

    Article  Google Scholar 

  25. Azzopardi G, Strisciuglio N, Vento M, Petkov N. Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal. 2015;19(1):46–57.

    Article  MATH  Google Scholar 

  26. Roychowdhury S, Koozekanani DD, Parhi KK. Iterative vessel segmentation of fundus images. IEEE Trans Biomed Eng. 2015;62(7):1738–49.

    Article  MATH  Google Scholar 

  27. Annunziata R, Garzelli A, Ballerini L, Mecocci A, Trucco E. Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J Biomed Health Inform. 2015;20(4):1129–38.

    Article  Google Scholar 

  28. Khomri B, Christodoulidis A, Djerou L, Babahenini MC, Cheriet F. Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm. IET Image Process. 2018;12(12):2163–71.

    Article  Google Scholar 

  29. Yue K, Zou B, Chen Z, Liu Q. Improved multi-scale line detection method for retinal blood vessel segmentation. IET Image Processing. 2018;12(8):1450–7.

    Article  MATH  Google Scholar 

  30. Shukla AK, Pandey RK, Pachori RB. A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomed Signal Process Control. 2020;59: 101883.

    Article  MATH  Google Scholar 

  31. Challoob M, Gao Y, Busch A, Nikzad M. Separable paravector orientation tensors for enhancing retinal vessels. IEEE Trans Med Imaging. 2022;42(3):880–93.

    Article  Google Scholar 

  32. Padmapriya M, Pasupathy S, Punitha V. Early diagnosis of diabetic retinopathy using unsupervised learning. Soft Comput A Fus Found Methodol Appl. 2023;27(13):1–12.

    Google Scholar 

  33. Imran A, Li J, Pei Y, Yang J-J, Wang Q. Comparative analysis of vessel segmentation techniques in retinal images. IEEE Access. 2019;7:114862–87.

    Article  MATH  Google Scholar 

  34. Chen C, Chuah JH, Ali R, Wang Y. Retinal vessel segmentation using deep learning: a review. IEEE Access. 2021;9:111985–2004.

    Article  Google Scholar 

  35. Khandouzi A, Ariafar A, Mashayekhpour Z, Pazira M, Baleghi Y. Retinal vessel segmentation, a review of classic and deep methods. Ann Biomed Eng. 2022;50(10):1292–314.

    Article  Google Scholar 

  36. Cervantes J, Cervantes J, García-Lamont F, Yee-Rendon A, Cabrera JE, Jalili LD. A comprehensive survey on segmentation techniques for retinal vessel segmentation. Neurocomputing. 2023;556: 126626.

    Article  MATH  Google Scholar 

  37. Sun K. Development of segmentation methods for vascular angiogram. IETE Tech Rev. 2011;28(5):392–9.

    Article  MATH  Google Scholar 

  38. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.

    Article  Google Scholar 

  39. Farnell DJ, Hatfield FN, Knox P, Reakes M, Spencer S, Parry D, Harding SP. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J Franklin Inst. 2008;345(7):748–65.

    Article  MATH  Google Scholar 

  40. Zhang J, Dashtbozorg B, Bekkers E, Pluim JP, Duits R, Haar Romeny BM. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans Med Imaging. 2016;35(12):2631–44.

    Article  MATH  Google Scholar 

  41. Prentašić P, Lončarić S, Vatavuk Z, Benčić G, Subašić M, Petković T, Dujmović L, Malenica-Ravlić M, Budimlija N, Tadić R. Diabetic retinopathy image database (dridb): a new database for diabetic retinopathy screening programs research. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 711–716. IEEE. 2013.

  42. Perez-Rovira A, Zutis K, Hubschman JP, Trucco E. Improving vessel segmentation in ultra-wide field-of-view retinal fluorescein angiograms. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2614–2617. IEEE. 2011.

  43. Chalakkal RJ, Abdulla WH, Sinumol S. Comparative analysis of university of auckland diabetic retinopathy database. In: Proceedings of the 9th International Conference on Signal Processing Systems, pp. 235–239. 2017

  44. Jin K, Huang X, Zhou J, Li Y, Yan Y, Sun Y, Zhang Q, Wang Y, Ye J. Fives: a fundus image dataset for artificial intelligence based vessel segmentation. Sci Data. 2022;9(1):475.

    Article  MATH  Google Scholar 

  45. Lam BSY, Yan H. A novel vessel segmentation algorithm for pathological retina images based on the divergence of vector fields. IEEE Trans Med Imaging. 2008;27(2):237–46.

    Article  MATH  Google Scholar 

  46. Fraz M, Javed M, Basit A Retinal vessels extraction using bit planes. In: Proceedings of the Eighth IASTED International Conference, vol. 630, p. 18. 2008.

  47. Kovács G, Hajdu A. A self-calibrating approach for the segmentation of retinal vessels by template matching and contour reconstruction. Med Image Anal. 2016;29:24–46.

    Article  MATH  Google Scholar 

  48. Gao J, Chen G, Lin W. An effective retinal blood vessel segmentation by using automatic random walks based on centerline extraction. BioMed Res Int. 2020;2020(1):7352129.

    Article  Google Scholar 

  49. Sazak Ç, Nelson CJ, Obara B. The multiscale bowler-hat transform for blood vessel enhancement in retinal images. Pattern Recogn. 2019;88:739–50.

    Article  MATH  Google Scholar 

  50. Yin B, Li H, Sheng B, Hou X, Chen Y, Wu W, Li P, Shen R, Bao Y, Jia W. Vessel extraction from non-fluorescein fundus images using orientation-aware detector. Med Image Anal. 2015;26(1):232–42.

    Article  Google Scholar 

  51. Huang Z, Zhao Y, Yu Z, Qin P, Han X, Wang M, Liu M, Gregersen H. Biu-net: a dual-branch structure based on two-stage fusion strategy for biomedical image segmentation. Comput Methods Prog Biomed. 2024;108235.

  52. Ghislain F, Beaudelaire ST, Daniel T. An accurate unsupervised extraction of retinal vasculature using curvelet transform and classical morphological operators. Comput Biol Med. 2024;178: 108801.

    Article  MATH  Google Scholar 

  53. Shukla AK, Pandey RK, Yadav S, Pachori RB. Generalized fractional filter-based algorithm for image denoising. Circ Syst Signal Process. 2020;39:363–90.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the editor and the reviewers for their constructive comments to improve the quality of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Rajesh K. Pandey and Varun Makkar contributed to the conception and design of the study. The software and formal analysis were performed by Varun Makkar. The manuscript was written by Varun Makkar and Arya Tewary. Rajesh K. Pandey and Ram Bilas Pachori were involved in the overall supervision and methodology. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Varun Makkar or Rajesh K. Pandey.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Research involving human and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makkar, V., Tewary, A., Pandey, R.K. et al. Collation of a Few Retinal Vessel Segmentation Techniques: Is the Problem Solved?. SN COMPUT. SCI. 6, 161 (2025). https://doi.org/10.1007/s42979-025-03722-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-025-03722-x

Keywords