Skip to main content

Advertisement

Log in

Long-term Plantation and Harvesting Planning for Industrial Plantation Forest Areas

  • Original Research
  • Published:
Operations Research Forum Aims and scope Submit manuscript

Abstract

This paper integrates forest harvesting and plantation operations considering the industry’s long-term demand. Forest harvesting problem has been still one of the open problems in operational research, and the problem is interesting because forests are nonrenewable natural resources in short term. Each harvested tree must be replanted within a plantation plan in order to protect the ecosystem and future generation’s needs for forestry goods. A dynamic mixed integer programming approach is proposed for the problem. Furthermore, three hypothetical examples of different sizes are presented for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the study are available from the corresponding author on reasonable request.

References

  1. Sedjo RA (2001) The role of forest plantations in the world’s future timber supply. For Chron 77. https://doi.org/10.5558/tfc77221-2

  2. Ball J, Carle J, Del Lungo A (2005) Contribution of poplars and willows to sustainable forestry and rural development. UNASYLVA-FAO- 56(2):3

  3. General Directorate of Forestry (2017) Forestry Statistics General Directorate of Forestry of Republic of Turkey. https://www.ogm.gov.tr/ekutuphane/Istatistikler/Forms/AllItems.aspx?RootFolder=%2Fekutuphane%2FIstatistikler%2FOrmancılıkİstatistikleri&FolderCTID=0x012000301D182F8CB9FC49963274E712A2DC00. Accessed 5 Oct 2018

  4. General Directorate of Forestry Poplar and Fast Growing Forest Trees Research Institute Poplars and Willows in Turkey: Country Progress Report of the National Poplar Commision (2016). Retrieved from https://kavakcilik.ogm.gov.tr/Lists/Haberler/Attachments/194/Country%20Progress%20Report%20-%20Turkey.pdf

  5. Rönnqvist M, D’Amours S, Weintraub A et al (2015) Operations Research challenges in forestry: 33 open problems. Ann Oper Res 232:11–40. https://doi.org/10.1007/s10479-015-1907-4

    Article  Google Scholar 

  6. Reed WJ, Errico D (1986) Optimal harvest scheduling at the forest level in the presence of the risk of fire. Can J For Res 16:266–278. https://doi.org/10.1139/x86-047

    Article  Google Scholar 

  7. Boychuk D, Martell DL (1996) A multistage stochastic programming model for sustainable forest-level timber supply under risk of fire. For Sci 42:10–26

    Google Scholar 

  8. Snyder S, ReVelle C (1997) Dynamic selection of harvests with adjacency restrictions: The SHARe model. For Sci 43:213–222

    Google Scholar 

  9. Hoganson HM, Borges JG (1998) Using dynamic programming and overlapping subproblems to address adjacency in large harvest scheduling problems. For Sci 44:526–538

    Google Scholar 

  10. Díaz-Balteiro L, Romero C (1998) Modeling timber harvest scheduling problems with multiple criteria: An application in Spain. For Sci 44:47–57

    Google Scholar 

  11. Murray AT (1999) Spatial restrictions in harvest scheduling. For Sci 45:45–52

    Google Scholar 

  12. Borges JG, Hoganson HM, Rose DW (1999) Combining a decomposition strategy with dynamic programming to solve spatially constrained forest management scheduling problems. For Sci 45:201–212

    Google Scholar 

  13. McDill ME, Braze J (2000) Comparing adjacency constraint formulations for randomly generated forest planning problems with four age-class distributions. For Sci 46:423–436

    Google Scholar 

  14. Bettinger P, Graetz D, Boston K et al (2002) Eight heuristic planning techniques applied to three increasingly difficult wildlife planning problems. Silva Fenn 36:561–584

    Article  Google Scholar 

  15. McDill ME, Rebain SA, Braze J (2002) Harvest scheduling with area-based adjacency constraints. For Sci 48:631–642

    Google Scholar 

  16. Boston K, Bettinger P (2002) Combining tabu search and genetic algorithm heuristic techniques to solve spatial harvest scheduling problems. For Sci 48:35–46

    Google Scholar 

  17. Caro F, Constantino M, Martins I, Weintraub A (2003) A 2-Opt Tabu Search Procedure for the Multiperiod Forest Harvesting Problem with Adjacency, Greenup, Old Growth, and Even Flow Constraints. For Sci 49:738–751

    Google Scholar 

  18. Rebain S, McDill ME (2003) A mixed-integer formulation of the minimum patch size problem. For Sci 49:608–618

    Google Scholar 

  19. Goycoolea M, Murray AT, Barahona F et al (2005) Harvest scheduling subject to maximum area restrictions: Exploring exact approaches. Oper Res 53:490–500. https://doi.org/10.1287/opre.1040.0169

    Article  Google Scholar 

  20. Gómez T, Hernández M, León MA, Caballero R (2006) A forest planning problem solved via a linear fractional goal programming model. For Ecol Manage 227:79–88. https://doi.org/10.1016/j.foreco.2006.02.012

    Article  Google Scholar 

  21. Constantino M, Martins I, Borges JG (2008) A new mixed-integer programming model for harvest scheduling subject to maximum area restrictions. Oper Res 56:542–551. https://doi.org/10.1287/opre.1070.0472

    Article  Google Scholar 

  22. Goycoolea M, Murray A, Vielma JP, Weintraub A (2009) Evaluating approaches for solving the area restriction model in harvest scheduling. For Sci 55:149–165

    Google Scholar 

  23. Öhman K, Eriksson LO (2010) Aggregating harvest activities in long term forest planning by minimizing harvest area perimeters. Silva Fenn 44:77–89

    Article  Google Scholar 

  24. Konoshima M, Marušák R, Yoshimoto A (2011) Spatially constrained harvest scheduling for strip allocation under Moore and Neumann neighbourhood adjacency. J For Sci 57:70–77

    Article  Google Scholar 

  25. Ferreira L, Miguel F, Jose G, Garcia-Gonzalo J (2012) A stochastic dynamic programming approach to optimize short-rotation coppice systems management scheduling: An application to eucalypt plantations under wildfire risk in Portugal. For Sci 58:353–365. https://doi.org/10.5849/forsci.10-084

    Article  Google Scholar 

  26. Tóth SF, McDill ME, Könnyu N, George S (2012) A strengthening procedure for the path formulation of the area-based adjacency problem in harvest scheduling models. Math Comput For Nat Sci 4:27–49

    Google Scholar 

  27. Carvajal R, Constantino M, Goycoolea M et al (2013) Imposing connectivity constraints in forest planning models. Oper Res 61:824–836. https://doi.org/10.1287/opre.2013.1183

    Article  Google Scholar 

  28. Tóth SF, McDill ME, Könnyü N, George S (2013) Testing the use of lazy constraints in solving area-based adjacency formulations of harvest scheduling models. For Sci 59:157–176. https://doi.org/10.5849/forsci.11-040

    Article  Google Scholar 

  29. Könny N, Tóth SF (2013) A cutting plane method for solving harvest scheduling models with area restrictions. Eur J Oper Res 228:236–248. https://doi.org/10.1016/j.ejor.2013.01.020

    Article  Google Scholar 

  30. Neto T, Constantino M, Martins I, Pedroso JP (2013) A branch-and-bound procedure for forest harvest scheduling problems addressing aspects of habitat availability. Int Trans Oper Res 20:689–709. https://doi.org/10.1111/itor.12003

    Article  Google Scholar 

  31. Limaei SM, Kouhi MS, Sharaji TR (2014) Goal programming approach for sustainable forest management (case study in Iranian Caspian forests). J For Res 25:429–435. https://doi.org/10.1007/s11676-014-0472-z

    Article  Google Scholar 

  32. Martins I, Ye M, Constantino M et al (2014) Modeling target volume flows in forest harvest scheduling subject to maximum area restrictions. TOP 22:343–362. https://doi.org/10.1007/s11750-012-0260-x

    Article  Google Scholar 

  33. Hernandez M, Gómez T, Molina J et al (2014) Efficiency in forest management: A multiobjective harvest scheduling model. J For Econ 20:236–251. https://doi.org/10.1016/j.jfe.2014.06.002

    Article  Google Scholar 

  34. Bachmatiuk J, Garcia-Gonzalo J, Borges JG (2015) Analysis of the performance of different implementations of a heuristic method to optimize forest harvest scheduling. Silva Fenn 49. https://doi.org/10.14214/sf.1326

  35. Eyvindson K, Kangas A (2016) Integrating risk preferences in forest harvest scheduling. Ann For Sci 73:321–330. https://doi.org/10.1007/s13595-015-0517-2

    Article  Google Scholar 

  36. Borges P, Martins I, Bergseng E et al (2016) Effects of site productivity on forest harvest scheduling subject to green-up and maximum area restrictions. Scand J For Res 31:507–516. https://doi.org/10.1080/02827581.2015.1089931

    Article  Google Scholar 

  37. McDill ME, Tóth SF, John RS et al (2016) Comparing Model I and Model II formulations of spatially explicit harvest scheduling models with maximum area restrictions. For Sci 62:28–37. https://doi.org/10.5849/forsci.14-179

    Article  Google Scholar 

  38. Neto T, Constantino M, Martins I, Pedroso JP (2017) Forest harvest scheduling with clearcut and core area constraints. Ann Oper Res 258:453–478. https://doi.org/10.1007/s10479-016-2313-2

    Article  Google Scholar 

  39. Álvarez-Miranda E, Garcia-Gonzalo J, Ulloa-Fierro F et al (2018) A multicriteria optimization model for sustainable forest management under climate change uncertainty: an application in Portugal. Eur J Oper Res 269:79–98. https://doi.org/10.1016/j.ejor.2017.04.052

    Article  Google Scholar 

  40. Constantino M, Martins I (2018) Branch-and-cut for the forest harvest scheduling subject to clearcut and core area constraints. Eur J Oper Res 265:723–734. https://doi.org/10.1016/j.ejor.2017.07.060

    Article  Google Scholar 

  41. Mgeni ASM, Price C (1993) Planning of forest plantation investments with the aid of linear programming: a case study of Sao Hill Forest, Tanzania. For Ecol Manage 62:51–72. https://doi.org/10.1016/0378-1127(93)90041-K

    Article  Google Scholar 

  42. Tyynelä T, Otsamo R, Otsamo A (2003) Indigenous livelihood systems in industrial tree-plantation areas in West Kalimantan, Indonesia: Economics and plant-species richness. Agrofor Syst 57:87–100. https://doi.org/10.1023/A:1023930805422

    Article  Google Scholar 

  43. Giménez JC, Bertomeu M, Diaz-Balteiro L, Romero C (2013) Optimal harvest scheduling in Eucalyptus plantations under a sustainability perspective. For Ecol Manage 291:367–376. https://doi.org/10.1016/j.foreco.2012.11.045

    Article  Google Scholar 

  44. Moreira JMMAP, Rodriguez LCE, Caixeta-Filho JV (2013) An optimization model to integrate forest plantations and connecting corridors. For Sci 59:661–669. https://doi.org/10.5849/forsci.12-051

    Article  Google Scholar 

  45. Zhai W, Zhao Y, Lian X et al (2014) Management planning of fast-growing plantations based on a bi-level programming model. For Policy Econ 38:173–177. https://doi.org/10.1016/j.forpol.2013.08.009

    Article  Google Scholar 

  46. da Silva PHBM, Arce JE, Loch GV et al (2016) Forest harvest scheduling plan integrated to the road network | Plano de agendamento da colheita florestal integrado à rede de estradas. Cerne 22:69–76. https://doi.org/10.1590/01047760201622012096

    Article  Google Scholar 

  47. Diaz-Balteiro L, Alfranca O, González-Pachón J, Romero C (2016) Ranking of industrial forest plantations in terms of sustainability: a multicriteria approach. J Environ Manage 180:123–132. https://doi.org/10.1016/j.jenvman.2016.05.022

    Article  Google Scholar 

  48. Augustynczik ALD, Arce JE, Silva ACL (2016) Aggregating forest harvesting activities in forest plantations through Integer Linear Programming and Goal Programming. J For Econ 24:72–81. https://doi.org/10.1016/j.jfe.2016.06.002

    Article  Google Scholar 

  49. Broz D, Durand G, Rossit D et al (2017) Strategic planning in a forest supply chain: a multigoal and multiproduct approach. Can J For Res 47:297–307. https://doi.org/10.1139/cjfr-2016-0299

    Article  Google Scholar 

  50. Fuentealba S, Pradenas L, Linfati R, Ferland JA (2019) Forest harvest and sawmills: An integrated tactical planning model. Comput Electron Agric 156:275–281. https://doi.org/10.1016/J.COMPAG.2018.11.011

    Article  Google Scholar 

  51. POPLAR and FAST GROWING FOREST TREES RESEARCH INSTITUTE. In: POPLAR FAST Grow. For. TREES Res. Inst. http://www.kavak.gov.tr/kavakcilik/mkvagtek/mkvagtek.htm. Accessed 8 Feb 2018

  52. IBM ILOG CPLEX Optimization Studio | IBM. https://www.ibm.com/products/ilog-cplex-optimization-studio. Accessed 5 Oct 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oğuzhan Ahmet Arık.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arık, O.A. Long-term Plantation and Harvesting Planning for Industrial Plantation Forest Areas. SN Oper. Res. Forum 2, 28 (2021). https://doi.org/10.1007/s43069-021-00069-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43069-021-00069-w

Keywords

MSC Classification Codes

Navigation