Skip to main content

Advertisement

Log in

Optimal Control Analysis of a Mathematical Model for Recurrent Malaria Dynamics

  • Research
  • Published:
Operations Research Forum Aims and scope Submit manuscript

Abstract

Recurrence of malaria symptoms after treatment constitutes one of the major factors affecting malaria control in the population. The transmission of malaria will persist in the population, if effective and considerable control measures are not put in place. In this study, a time-dependent deterministic mathematical model focusing on the role of preventing and controlling the transmission dynamics of recurrent malaria is considered and analyzed. The formulated non-autonomous model is justified by exploring the sensitivities of the basic reproduction number to changes in the parameters of its time-invariant version. By using optimal control theory, the existence of four optimal control functions, including personal preventive effort against mosquito bites, anti-relapse measure, anti-malaria treatment and insecticide spraying, is qualitatively established and the control quadruple is characterized using Pontryagin’s maximum principle. Numerical simulations of the optimal control problem are conducted to show the effects of doubling optimal control functions on the recurrent malaria system through graphical demonstrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data supporting the findings of this study are included in the manuscript.

Code Availability

Not applicable.

References

  1. Centres for Diseases Control and Prevention (CDC) (2022) Malaria. http://www.cdc.gov/malaria/. Accessed Apr 2022

  2. World Health Organization (WHO) (2021) World Malaria Report. WHO, Geneva. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021. Accessed 14 Apr 2022

  3. Ghosh M, Olaniyi S, Obabiyi OS (2020) Mathematical analysis of reinfection and relapse in malaria dynamics. Appl Math Comput 373:125044. https://doi.org/10.1016/j.amc.2020.125044

    Article  Google Scholar 

  4. Kotepui M, Punsawad C, Kotepui KU, Somsak V, Phiwklam N, PhunPhuech B (2019) Prevalence of malaria recurrence and hematological alteration following the initial drug regimen: a retrospective study in western Thailand. BMC Public Health 19:1294. https://doi.org/10.1186/s12889-019-7624-1

    Article  Google Scholar 

  5. Marcus MB (2011) Malaria: origin of the term hypnozoite. J Hist Biol 4(44):481–86. https://doi.org/10.1007/s10739-010-9239-3

    Article  Google Scholar 

  6. Ndiaye JL, Faye B, Gueye A, Tine R, Ndiaye D, Tchania C et al (2011) Repeated treatment of recurrent uncomplicated P. falciparum malaria in Senegal with fixed-dose artesunate plus amodiaquine versus fixed dose artemether plus lumefantrine. A randomized open-label trial. Malar J 10(237)

  7. Abimbade SF, Olaniyi S, Ajala OA (2022) Recurrent malaria dynamics: insight from mathematical modelling. Eur Phys J Plus 137:292. https://doi.org/10.1140/epjp/s13360-022-02510-3

    Article  Google Scholar 

  8. Kuddus MA, Rahman A (2022) Modelling and analysis of human-mosquito malaria transmission dynamics in Bangladesh. Math Compt Simul 193:123–138. https://doi.org/10.1016/j.matcom.2021.09.021

    Article  Google Scholar 

  9. Layaka AM, Abbo B, Haggar DMS, Youssouf P (2021) Optimal control analysis of intra-host dynamics of malaria with immune response. Advan Dyn Sys Appl 16(2):1097–1115

    Google Scholar 

  10. Ndii MZ, Adi YA (2021) Understanding the effects of individual awareness and vector controls on malaria transmission dynamics using multiple optimal control. Chaos Solitons Fractals 153(111476). https://doi.org/10.1016/j.chaos.2021.111476

  11. Obabiyi OS, Olaniyi S (2019) Global stability analysis of malaria transmission dynamics with vigilant compartment. Electron J Differential Equations 9:1–10

    Google Scholar 

  12. Olaniyi S, Okosun KO, Adesanya SO, Lebelo RS (2020) Modelling malaria dynamics with partial immunity and protected travellers: optimal control and cost-effectiveness analysis. J Biol Dyn 14(1):90–115. https://doi.org/10.1080/17513758.2020.01722265

    Article  Google Scholar 

  13. Tchoumi SY, Dongmo EZ, Kamgang JC, Tchuenche JM (2022) Dynamics of a two-group structured malaria transmission model. Inform Med Unlocked 29:100897. https://doi.org/10.1016/j.imu.2022.100897

    Article  Google Scholar 

  14. Keno DT, Dano LB, Makinde OD (2022) Modeling and optimal control analysis for malaria transmission with role of climate variability. Comput Math Methods. https://doi.org/10.1155/2022/9667396

    Article  Google Scholar 

  15. Gahungu P, Wahid BKA, Oumarou AM, Bisso S (2017) Stochastic age-structured malaria transmission model. Journal of Applied Mathematics and Bioinformatics 7(2):29–50

    Google Scholar 

  16. Upadhyay RK, Iyengar SRK (2021) Spatial dynamics and pattern formation in biological populations. Chapman and Hall/CRC

  17. Ahmed N, Macias-Diaz JE, Raza A, Baleanu D, Rafiq M, Iqbal Z, Ahmad MO (2021) Design, analysis and comparison of a nonstandard computational method for the solution of a general stochastic fractional epidemic model. Axioms 11(1):10

    Article  Google Scholar 

  18. Harvey D, Valkenburg W, Amara A (2021) Predicting malaria epidemics in Burkina Faso with machine learning. PLos One 16(6):e0253302

    Article  Google Scholar 

  19. Blayney K, Ca Y, Kwon H (2009) Optimal control of vector-borne diseases: treatment and prevention. Discrete Contin Dyn Syst Ser B 11(3):587–611. https://doi.org/10.3934/dcdsb.2009.11.587

    Article  Google Scholar 

  20. Fatmawati Herdicho FF, Windarto Chukwu W, Tasman H (2021) An optimal control of malaria transmission model with mosquito seasonal factor. Results Phys 25:104238. https://doi.org/10.1016/j.rinp.2021.104238

    Article  Google Scholar 

  21. Goswami NK, Shanmukha B (2022) Dynamics of COVID-19 outbreak and optimal control strategies: a model-based analysis. Adv Syst Sci Appl 21(4):65–86. https://doi.org/10.25728/assa.2021.21.4.1156

  22. Guo J, Gao S, Yan S, Liao Z (2022) Bifurcation and optimal control analysis of delayed models for huanglongbing. Int J Biomath. https://doi.org/10.1142/S1793524522500498

    Article  Google Scholar 

  23. Lashari AA, Aly S, Hattaf K, Zaman G, Jung IH, Li X-Z (2012) Presentation of malaria epidemics using multiple optimal controls. J Appl Math Article ID 946504. https://doi.org/10.1155/2012/946504

  24. Li T, Guo Y (2022) Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination. Chaos Solitons Fractals 156:111825. https://doi.org/10.1016/j.chaos.2022.111825

    Article  Google Scholar 

  25. Okosun KO, Rachid O, Marcus N (2013) Optimal control strategies and cost-effectiveness analysis of a malaria model. BioSyst 111:83–101. https://doi.org/10.1016/j.biosystems.2012.09.008

    Article  Google Scholar 

  26. Olaniyi S, Mukamuri M, Okosun KO, Adepoju OA (2022) Mathematical analysis of a social hierarchy-structured model for malaria transmission dynamics. Results Phys 34:104991. https://doi.org/10.1016/j.rinp.2021.104991

    Article  Google Scholar 

  27. Olaniyi S, Obabiyi OS (2014) Qualitative analysis of malaria dynamics with nonlinear incidence function. Appl Math Sci 8(78):3889–3904. https://dx.doi.org/10.12988/ams.2014.45326

  28. Kifle ZS, Obsu LL (2022) Mathematical modeling for COVID-19 transmission dynamics: a case study in Ethiopia. Results Phys 34:105191. https://doi.org/10.1016/j.rinp.2022.105191

    Article  Google Scholar 

  29. Paul AK, Kuddus MA (2022) Mathematical analysis of a COVID-19 model with double dose vaccination in Bangladesh. Results Phys 35:105392. https://doi.org/10.1016/j.rinp.2022.105392

    Article  Google Scholar 

  30. Abimbade SF, Olaniyi S, Ajala OA, Ibrahim MO (2020) Optimal control analysis of a tuberculosis model with exogenous re-infection and incomplete treatment. Optim Control Appl Meth 41:2349–2368. https://doi.org/10.1002/oca.2658

    Article  Google Scholar 

  31. Ademosu J, Olaniyi S, Adewale SO (2021) Stability analysis and optimal measure for controlling eco-epidemiological dynamics of prey-predator model. Adv Syst Sci Appl 21(2):83–103. https://doi.org/10.25728/assa.2021.21.2.1062

  32. Adepoju OA, Olaniyi S (2021) Stability and optimal control of a disease model with vertical transmission and saturated incidence. Sci Afri 12:e00800. https://doi.org/10.1016/j.sciaf.2021.e00800

    Article  Google Scholar 

  33. Asamoah JK, Okyere E, Abidemi A, Moore SE, Sun G-Q, Jin Z, Acheampong E, Gordon JF (2022) Optimal control and comprehensive cost-effectiveness analysis for COVID-19. Results Phys 33:105177. https://doi.org/10.1016/j.rinp.2022.105177

    Article  Google Scholar 

  34. Fleming WH, Rischel RW (1975) Deterministic and stochastic optimal control. Springer-Verlag, New York, USA

    Book  Google Scholar 

  35. Rector CR, Chandra S, Dutta J (2005) Principles of optimization theory. Narosa Publishing House, New Delhi

    Google Scholar 

  36. Okyere E, Olaniyi S, Bonyah E (2020) Analysis of zika virus dynamics with sexual transmission route using multiple optimal controls. Sci Afr 9:e00532. https://doi.org/10.1016/j.sciaf.2020.e00532

    Article  Google Scholar 

  37. Abidemi A, Olaniyi S, Adepoju OA (2022) An explicit note on the existence theorem of optimal control problem. J Phys Conf Ser 2199:012021. https://doi.org/10.1088/1742-6596/2199/1/012021

    Article  Google Scholar 

  38. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Wiley, New York

    Google Scholar 

  39. Akanni JO, Akinpelu FO, Olaniyi S, Oladipo AT, Ogunsola AW (2020) Modelling financial crime population dynamics: optimal control and cost-effectiveness analysis. Int J Dynam Control 8:531–544. https://doi.org/10.1007/s40435-019-00572-3

    Article  Google Scholar 

  40. Khan AA, Ullah S, Amin R (2022) Optimal control analysis of COVID-19 vaccine epidemic model: a case study. Eur Phys J Plus 137:156. https://doi.org/10.1140/epjp/s13360-022-02365-8

    Article  Google Scholar 

  41. Olaniyi S, Obabiyi OS, Okosun KO, Oladipo AT, Adewale SO (2020) Mathematical modelling and optimal cost-effective control of COVID-19 transmission dynamics. Eur Phys J Plus 135(938). https://doi.org/10.1140/epjp/s13360-020-00954-z

  42. Sharma S, Samanta G (2015) Stability analysis and optimal control of an epidemic model with vaccination. Int J Biomath 8(3):1550030. https://doi.org/10.1142/S1793524515500308

    Article  Google Scholar 

  43. Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman and Hall/CRC, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SO: conceptualization, methodology, formal analysis, supervision, review and editing. OAA: supervision and visualization. SFA: methodology, draft, formal analysis, review and editing.

Corresponding author

Correspondence to Sulaimon F. Abimbade.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olaniyi, S., Ajala, O.A. & Abimbade, S.F. Optimal Control Analysis of a Mathematical Model for Recurrent Malaria Dynamics. Oper. Res. Forum 4, 14 (2023). https://doi.org/10.1007/s43069-023-00197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43069-023-00197-5

Keywords

Navigation