
Trusted Computing Platforms:
Design and Applications

TRUSTED COMPUTING PLATFORMS:
DESIGN AND APPLICATIONS

SEAN W. SMITH
Department of Computer Science
Dartmouth College
Hanover, New Hampshire USA

Springer

eBook ISBN: 0-387-23917-0
Print ISBN: 0-387-23916-2

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Contents

List of Figures
List of Tables
Preface
Acknowledgments

xiii
xv

xvii
xix

1. INTRODUCTION

1.1

1.2

1.3

1.4

Trust and Computing

Instantiations

Design and Applications

Progression

1

2

2

5

7

2. MOTIVATING SCENARIOS 9

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Properties

Basic Usage

Examples of Basic Usage

Position and Interests

Examples of Positioning

The Idealogical Debate

Further Reading

9

10

12

14

15

18

18

3. ATTACKS 19

3.1 Physical Attack
3.1.1
3.1.2
3.1.3

No Armor
Single Chip Devices
Multi-chip Devices

21
22
23
23

3.2 Software Attacks 24
3.2.1 25Buffer Overflow

vi TRUSTED COMPUTING PLATFORMS

3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

Unexpected Input
Interpretation Mismatches
Time-of-check vs Time-of-use
Atomicity
Design Flaws

25
26
27
28
29

3.3 Side-channel Analysis 30
30
33
34

3.3.1
3.3.2
3.3.3

Timing Attacks
Power Attacks
Other Avenues

3.4 Undocumented Functionality
3.4.1
3.4.2
3.4.3

Example: Microcontroller Memory
Example: FLASH Memory
Example: CPU Privileges

35
36
37
38

3.5 Erasing Data 38

3.6

3.7

System Context

Defensive Strategy

39

41
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5

Tamper Evidence
Tamper Resistance
Tamper Detection
Tamper Response
Operating Envelope

41
41
41
42
42

3.8 Further Reading 42

4. FOUNDATIONS 43

4.1 Applications and Integration 43
4.1.1
4.1.2
4.1.3
4.1.4

Kent
Abyss
Citadel
Dyad

44
44
45
46

4.2 Architectures 48
4.2.1
4.2.2

Physical Security
Hardware and Software

48
49

4.3

4.4

4.5

Booting

The Defense Community

Further Reading

50

52

52

Contents

5. DESIGN CHALLENGES

vii

55

5.1 Context 55
5.1.1
5.1.2

Personal
Commercial

55
56

5.2 Obstacles 57
5.2.1
5.2.2

Hardware
Software

57
59

5.3 Requirements 63
5.3.1
5.3.2
5.3.3

Commercial Requirements
Security Requirements
Authenticated Execution

63
64
66

5.4

5.5

Technology Decisions

Further Reading

67

6. PLATFORM ARCHITECTURE 73

71

6.1 Overview
6.1.1 Security Architecture

73
74

6.2 Erasing Secrets 75
6.2.1
6.2.2
6.2.3

Penetration Resistance and Detection
Tamper Response
Other Physical Attacks

76
76
77

6.3 The Source of Secrets 78
6.3.1
6.3.2
6.3.3

Factory Initialization
Field Operations
Trusting the Manufacturer

78
79
81

6.4 Software Threats 81
6.4.1
6.4.2
6.4.3

Software Threat Model
Hardware Access Locks
Privacy and Integrity of Secrets

82
82
85

6.5 Code Integrity 85
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5

Loading and Cryptography
Protection against Malice
Protection against Reburn Failure
Protection against Storage Errors
Secure Bootstrapping

86
86
87
88
89

6.6 Code Loading 90
6.6.1
6.6.2

Authorities
Authenticating the Authorities

91
92

viii TRUSTED COMPUTING PLATFORMS

6.6.3
6.6.4
6.6.5

Ownership
Ordinary Loading
Emergency Loading

6.7

6.8

6.9

Putting it All Together

What’s Next

Further Reading

7. OUTBOUND AUTHENTICATION

7.1 Problem
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7

The Basic Problem
Authentication Approach
User and Developer Scenarios
On-Platform Entities
Secret Retention
Authentication Scenarios
Internal Certification

7.2 Theory
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7

What the Entity Says
What the Relying Party Concludes
Dependency
Soundness
Completeness
Achieving Both Soundness and Completeness
Design Implications

7.3 Design and Implementation
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

Layer Separation
The Code-Loading Code
The OA Manager
Naming
Summary
Implementation

7.4 Further Reading

8. VALIDATION
8.1 The Validation Process

8.1.1
8.1.2
8.1.3

Evolution
FIPS 140-1
The Process

8.2 Validation Strategy

92
93
96

97

99

99

101

101
102
102
103
104
104
105
107

108
109
109
110
111
112
112
113

114
115
115
116
119
119
120

121

123
124
124
125
126

126

Contents ix

8.3 Formalizing Security Properties 129
8.3.1
8.3.2
8.3.3
8.3.4

Building Blocks
Easy Invariants
Controlling Code
Keeping Secrets

130
131
131
132

8.4

8.5

8.6

8.7

Formal Verification

Other Validation Tasks

Reflection

Further Reading

134

136

138

139

9. APPLICATION CASE STUDIES 141
9.1

9.2

Basic Building Blocks

Hardened Web Servers 142
1429.2.1

9.2.2
9.2.3

The Problem
Using a TCP
Implementation Experience

144
149

9.3 Rights Management for Big Brother’s Computer 152
9.3.1
9.3.2
9.3.3

The Problem
Using a TCP
Implementation Experience

152
153
154

9.4 Private Information 155
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6

The Problem
Using a TCP: Initial View
Implementation Experience
Using Oblivious Circuits
Reducing TCP Memory Requirements
Adding the Ability to Update

155
157
158
160
163
165

9.5 Other Projects 167
9.5.1
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6
9.5.7

Postal Meters
Kerberos KDC
Mobile Agents
Auctions
Marianas
Trusted S/MIME Gateways
Grid Tools

167
167
167
167
168
169
169

9.6

9.7
Lessons Learned

Further Reading

170

171

141

x TRUSTED COMPUTING PLATFORMS

10. TCPA/TCG 173

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Basic Structure

Outbound Authentication

Physical Attacks

Applications

Experimentation

TPM 1.2 Changes

Further Reading

175

178

179

180

180

181

181

11. EXPERIMENTING WITH TCPA/TCG 183

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

Desired Properties

The Lifetime Mismatch

Architecture

Implementation Experience

Application: Hardened Apache

Application: OpenCA

Application: Compartmented Attestation

Further Reading

184

184

185

189

190

191

193

194

12. NEW HORIZONS 195

12.1

12.2

Privilege Architectures

Hardware Research

195

197
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6

XOM
MIT AEGIS
Cerium
Virtual Secure Coprocessing
Virtual Machine Monitors
Others

197
198
199
199
199
200

12.3 Software Research 201
12.3.1
12.3.2

Software-based Attestation
Hiding in Plain Sight

202
202

12.4 Current Industrial Platforms 203
12.4.1
12.4.2
12.4.3

Crypto Coprocessors and Tokens
Execution Protection
Capability-based Machines

203
203
204

12.5 Looming Industry Platforms 204
12.5.1 LaGrande 204

Contents xi

12.5.2
12.5.3

TrustZone
NGSCB

206
206

12.6

12.7

Secure Coprocessing Revisited

Further Reading

208

209

Glossary

References

About the Author

Index

211

221

235

237

List of Figures

5.1
5.2
6.1
6.2
6.3

6.4

6.5
6.6
6.7
7.1
7.2

7.3

7.4

7.5
7.6
7.7
7.8
8.1

8.2

8.3
8.4

Secure coprocessing application structure
The basic hardware architecture.
The basic software architecture.
The authority tree.

Contents of a layer.
Statespace for a layer.

Ordinary code-load command.

Countersignatures.
Authorization of code-load commands.
An emergency code-load command.
Epochs and configurations.
Replacing untrusted software with trusted software creates
problems.
Replacing trusted software with untrusted software creates
problems.

Sketch of the proof of our outbound authentication theorem.
When the code-loading layer updates itself.
Having the certifier outlive a code change creates problems.
Having the certifier outlive the certified can cause problems.
We regenerate certifier key pairs with each code change.
The formal verification process, as we envisioned it before
we started.
The “safe control” invariant.
The “safe zeroization” invariant.
The formal verification process, as it actually happened.

3
68
69
91

93
93
94

95
95
97

105

106

107

113
116
117
118
118

128
132
133
135

1.1

xiv TRUSTED COMPUTING PLATFORMS

8.5
9.1
9.2
9.3
11.1
12.1
12.2

Validation documentation tools.
Revising the SSL handshake to use a trusted co-server.
A switch
Oblivious shuffles with a Benes network
Flow of protection and trust in our TCPA/TCG-based platform.
The standard CPU privilege structure.
The revised CPU privilege structure.

136
150
160
162
188
196
197

List of Tables

6.1
6.2
9.1
9.2

Hardware ratchets protect secrets.
Hardware ratchets protect code.
Performance of an SSL server with a trusted co-server.
Slowdown caused by adding a trusted co-server.

85
87

151
151

Preface

We stand an exciting time in computer science. The long history of special-
ized research building and using security-enhanced hardware is now merging
with mainstream computing platforms; what happens next is not certain but is
bound to be interesting. This book tries to provide a roadmap.

A fundamental aspect of the current and emerging information infrastructure
is distribution: multiple parties participate in this computation, and each may
have different interests and motivations. Examining security in these distributed
settings thus requires examining which platform is doing what computation—
and which platforms a party must trust, to provide certain properties despite
certain types of adversarial action, if that party is to have trust in overall com-
putation. Securing distributed computation thus requires considering the trust-
worthiness of individual platforms, from the differing points of view of the
different parties involved. We must also consider whether the various parties
in fact trust this platform—and if they should, how it is that they know they
should.

The foundation of computing is hardware: the actual platform—gates and
wires—that stores and processes the bits. It is common practice to consider the
standard computational resources—e.g., memory and CPU power—a platform
can bring to a computational problem. In some settings, it is even common
to think of how properties of the platform may contribute to more intangible
overarching goals of a computation, such as fault tolerance. Eventually, we
may start trying to change the building blocks–the fundamental hardware—in
order to better suit the problem we are trying to solve.

Combining these two threads—the importance of trustworthiness in these
Byzantine distributed settings, with the hardware foundations of computing
platforms—gives rise to a number of questions. What are the right trustworthi-
ness properties we need for individual platforms? What approaches can we try
in the hardware and higher-level architectures to achieve these properties? Can

xviii TRUSTED COMPUTING PLATFORMS

we usefully exploit these trustworthiness properties in computing platforms for
broader application security?

With the current wave of commercial and academic trusted computing ar-
chitectures, these questions are timely. However, with a much longer history of
secure coprocessing, secure boot, and other experimentation, these questions
are not completely new. In this book, we will examine this big picture. We
look at the depth of the field: what a trusted computing platform might provide,
how one might build one, and what one might be done with one afterward.
However, we also look at the depth of history: how these ideas have evolved
and played out over the years, over a number of different real platforms—and
how this evolution continues today.

I was drawn to this topic in part because I had the chance to help do some
of the work that shaped this field. Along the way, I’ve enjoyed the privilege of
working with a number of excellent researchers. Some of the work in this book
was reported earlier in my papers [SW99, SPW98, Smi02, Smi01, MSWM03,
Smi03, Smi04], as documented in the “Further Reading” sections. Some of
my other papers expand on related topics [DPSL99, SA98, SPWA99,
JSM01, IS03b, SS01, IS03a, MSMW03, IS04b, IS04a].

Acknowledgments

Besides being a technical monograph, this book also represents a personal
research journey stretching over a decade.

I am not sure how to begin acknowledging all the friends and colleagues
who assisted with this journey. To start with: I am grateful to Doug Tygar and
Bennet Yee, for planting these seeds during my time at CMU and continuing
with friendship and suggestions since; to Gary Christoph and Vance Faber at Los
Alamos, for encouraging this work during my time there; and to Elaine Palmer
at IBM Watson, whose drive saw the defunct Citadel project turn into a thriving
research and product development effort. Steve Weingart and Vernon Austel
deserve particular thanks for their collaborations with security architecture and
formal modeling, respectively. Thanks are also due to the rest of the Watson
team, including Dave Baukus, Ran Canetti, Suresh Chari, Joan Dyer, Bob
Gezelter, Juan Gonzalez, Michel Hack, Jeff Kravitz, Mark Lindemann, Joe
McArthur, Dennis Nagel, Ron Perez, Pankaj Rohatgi, Dave Safford, and David
Toll; to the 4758 development teams in Vimercate, Charlotte, Poughkeepsie,
and Lexington; and to Mike Matyas.

Since I left IBM, this journey has been helped by fruitful discussions with
many colleagues, including Denise Anthony, Charles Antonelli, Dmitri Asonov,
Dan Boneh, Ryan Cathecart, Dave Challener, Srini Devadas, John Erickson,
Ed Feustel, Chris Hawblitzel, Peter Honeyman, Cynthia Irvine, Nao Itoi, Ruby
Lee, Neal McBurnett, Dave Nicol, Adrian Perrig, Dawn Song, and Leendert
van Doorn. In academia, research requires buying equipment and plane tickets
and paying students; these tasks were supported in part by the Mellon Foun-
dation, the NSF (CCR-0209144), AT&T/Internet2 and the Office for Domestic
Preparedness, Department of Homeland Security (2000-DT-CX-K001).

Here at Dartmouth, the journey continued with the research efforts of students
including Alex Barsamian, Mike Engle, Meredith Frost, Alex Iliev, Shan Jiang,
Evan Knop, Rich MacDonald, John Marchesini, Kazuhiro Minami, Mindy
Periera, Eric Smith, Josh Stabiner, Omen Wild, and Ling Yan. My colleagues in

xx TRUSTED COMPUTING PLATFORMS

the Dartmouth PKI Lab and the Department of Computer Science also provided
invaluable helpful discussion, and coffee too.

Dartmouth students Meredith Frost, Alex Iliev, John Marchesini, and Scout
Sinclair provided even more assistance by reading and commenting on early
versions of this manuscript.

Finally, I am grateful for the support and continual patience of my family.

Sean Smith
Hanover, New Hampshire
October 2004

