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Preface

We stand an exciting time in computer science. The long history of special-
ized research building and using security-enhanced hardware is now merging
with mainstream computing platforms; what happens next is not certain but is
bound to be interesting. This book tries to provide a roadmap.

A fundamental aspect of the current and emerging information infrastructure
is distribution: multiple parties participate in this computation, and each may
have different interests and motivations. Examining security in these distributed
settings thus requires examining which platform is doing what computation—
and which platforms a party must trust, to provide certain properties despite
certain types of adversarial action, if that party is to have trust in overall com-
putation. Securing distributed computation thus requires considering the trust-
worthiness of individual platforms, from the differing points of view of the
different parties involved. We must also consider whether the various parties
in fact trust this platform—and if they should, how it is that they know they
should.

The foundation of computing is hardware: the actual platform—gates and
wires—that stores and processes the bits. It is common practice to consider the
standard computational resources—e.g., memory and CPU power—a platform
can bring to a computational problem. In some settings, it is even common
to think of how properties of the platform may contribute to more intangible
overarching goals of a computation, such as fault tolerance. Eventually, we
may start trying to change the building blocks–the fundamental hardware—in
order to better suit the problem we are trying to solve.

Combining these two threads—the importance of trustworthiness in these
Byzantine distributed settings, with the hardware foundations of computing
platforms—gives rise to a number of questions. What are the right trustworthi-
ness properties we need for individual platforms? What approaches can we try
in the hardware and higher-level architectures to achieve these properties? Can
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we usefully exploit these trustworthiness properties in computing platforms for
broader application security?

With the current wave of commercial and academic trusted computing ar-
chitectures, these questions are timely. However, with a much longer history of
secure coprocessing, secure boot, and other experimentation, these questions
are not completely new. In this book, we will examine this big picture. We
look at the depth of the field: what a trusted computing platform might provide,
how one might build one, and what one might be done with one afterward.
However, we also look at the depth of history: how these ideas have evolved
and played out over the years, over a number of different real platforms—and
how this evolution continues today.

I was drawn to this topic in part because I had the chance to help do some
of the work that shaped this field. Along the way, I’ve enjoyed the privilege of
working with a number of excellent researchers. Some of the work in this book
was reported earlier in my papers [SW99, SPW98, Smi02, Smi01, MSWM03,
Smi03, Smi04], as documented in the “Further Reading” sections. Some of
my other papers expand on related topics [DPSL99,                  SA98, SPWA99,
JSM01, IS03b, SS01, IS03a, MSMW03, IS04b, IS04a].
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