Skip to main content

Tensor-Fields Visualization Using a Fabric-like Texture Applied to Arbitrary Two-dimensional Surfaces

  • Chapter
  • First Online:
Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

We present a visualization method for the exploration of three-dimensional tensor fields. The representation of the tensor field on a one-parameter family of two-dimensional surfaces as stretched, compressed and bent piece of fabric reflects the physical properties of stress and strain tensor fields. The texture parameters as the fiber density and fiber direction are controlled by tensor field. The surface family is defined as a set of isosurfaces extracted from an additional scalar field. This field can be a “connected” scalar field, for example, pressure or a scalar field representing some symmetry or inherent structure of the dataset. The texture generation consists basically of three steps. The first is the transformation of the tensor field into a positive definite metric. In the second step, we generate a spot noise texture as input for the final fabric generation. Shape and density of the spots are controlled by the eigenvalues of the tensor field. This spot image incorporates the entire information defined by the three eigenvalue fields. In the third step we use line integral convolution (LIC) to provide a contin- uous representation that enhances the visibility of the eigendirections. This method supports an intuitive distinction between positive and negative eigenvalues and supports the additional visualization of a connected scalar field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brian Cabral and Leith Leedom. Imaging vector fields using line integral convolution. In: SIGGRAPH 1993 Conference Proceedings, 1993, pages 263–272.

    Google Scholar 

  2. Thierry Delmarcelle and Lambertus Hesselink. Visualization of s second order tensor fields and matrix data. In: Proceedings of the Visualization 1992 Conference, 1992, pages 316–323.

    Google Scholar 

  3. Robert B. Haber. Visualization techniques for engineering mechanics. Computing Systems in Engineering, 1(1), 1990, pages 37–50.

    Article  MathSciNet  Google Scholar 

  4. Lambertus Hesselink, Thierry Delmarcelle and James L. Helman . Topology of second-order tensor fields. Computers in Physics, 9(3), 1995, pages 304–311.

    Google Scholar 

  5. Lambertus Hesselink, Yuval Levy and Yingmei Lavin. The topology of symmetric, second-order 3D tensor fields. IEEE Transactions on Visualization and Computer Graphics, 3(1), 1997, pages 1–11.

    Article  Google Scholar 

  6. Ingrid Hotz. Visualizing second order symmetric tensor fields by metric surfaces. In: Work in Progress of the Conference IEEE Visualization, 2001.

    Google Scholar 

  7. Ingrid Hotz. Isometric embedding by surface reconstruction from distances. In: Proceedings of the IEEE Visualization 2002 Conference, 2002, pages 251–258.

    Google Scholar 

  8. Ingrid Hotz, Louis Feng, Hans Hagen, Bernd Hamann, Boris Jeremic and Kenneth Joy. Physically based methods for tensor field visualization. In: Proceedings of the IEEE Visualization 2004 Conference, 2004, pages 123–130.

    Google Scholar 

  9. B. Jeremic, Gerik Scheuermann and Jan Frey. Tensor visualization in computational geomechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 26, 2002, pages 925–944.

    Article  MATH  Google Scholar 

  10. Gordon Kindlmann, David Weinstein and David Hart. Strategies for direct volume rendering of diffusion tensor fields. IEEE Transactions on Visualization and Computer Graphics, 6(2), 2000, pages 124–138.

    Article  Google Scholar 

  11. Ron D. Kriz, Edward H. Glaessgen and J.D. MacRae. Visualization blackboard: visualizing gradients in composite design and fabrication. IEEE Computer Graphics and Applications, 15, 1995, pages 10–13.

    Article  Google Scholar 

  12. W. C. de Leeuw and J. J. van Wijk. A probe for local flow field visualization. In: Proceedings of the Visualization 1993 Conference, 1993, pages 39–45.

    Google Scholar 

  13. James D. Murray. Mathematical biology I. An introduction, 3rd edition in 2 volumes. Springer, Berlin, 2002, ISBN: 0-387-95223-3.

    Google Scholar 

  14. J. Ou and E. Hsu. Generalized line integral convolution rendering of diffusion tensor fields. In: Proceedings of the 9th Scientific Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), 2001, page 790.

    Google Scholar 

  15. Allen R. Sanderson and Chris R. Johnson and Robert M. Kirby. Display of vector fields using a reaction-diffusion model. In: Proceedings of the IEEE Visualization 2004, pages 115–122, 2004.

    Google Scholar 

  16. Detlev Stalling and Hans-Christian Hege. Fast and resolution independent line integral convolution. In: SIGGRAPH 1995 Conference Proceedings, 1995, pages 149–256.

    Google Scholar 

  17. Xavier Tricoche, Gerik Scheuermann and Hans Hagen. Tensor topology tracking: a visualization method for time-dependent 2D symmetric tensor fields. In: A. Chalmers and T.-M. Rhyne, editors, EG 2001 Proceedings vol. 20(3) of Computer Graphics Forum. 2001, pages 461–470.

    Google Scholar 

  18. Alan Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society London B, 237, 1952, pages 37–72.

    Article  Google Scholar 

  19. Greg Turk. Generating textures on arbitrary surfaces using reaction diffusion. In: proceedings SIGGRAPH 1991, volume 25, pages 289–298. Addison Wesley, 1991.

    Google Scholar 

  20. David M. Weinstein, Gordon L. Kindlmann and Eric C. Lundberg. Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In: proceedings IEEE Visualization 1999 conference,1999, pages 249–254.

    Google Scholar 

  21. Carl-Fredrik Westin, Sharon Peled, Hakon Gudbjartsson, Ron Kikinis and Ferenc A. Jolesz. Geometrical diffusion measures for MRI from tensor basis analysis. In: ISMRM 1997, 1997, page 1742.

    Google Scholar 

  22. Andrew Witkin and Michael Kass. Reaction-diffusion textures. In: Proceedings SIGGRAPH 1991, vol. 25, pages 299–308. Addison Wesley, 1991.

    Google Scholar 

  23. Xiaoqiang Zheng and Alex Pang. HyperLIC. In: Proceedings of the IEEE Visualization 2003 Conference, 2003, pages 249–256.

    Google Scholar 

  24. Xiaoqiang Zheng and Alex Pang. Topological lines in 3D tensor fields. In: Proceedings of the IEEE Visualization 2004 Conference, 2004.

    Google Scholar 

  25. Leonid Zhukov and Alan H. Barr. Oriented tensor reconstruction: tracing neural pathways from diffusion tensor MRI. In: Proceedings of the IEEE Visualization 2002 Conference, 2002, pages 387–394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hotz, I., Feng, L., Hamann, B., Joy, K. (2009). Tensor-Fields Visualization Using a Fabric-like Texture Applied to Arbitrary Two-dimensional Surfaces. In: Möller, T., Hamann, B., Russell, R.D. (eds) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106657_8

Download citation

Publish with us

Policies and ethics