Skip to main content
Log in

Design of High-Order Extrapolated Impulse Response FIR Filters with Signed Powers-of-Two Coefficients

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Expensive multiplication operations can be replaced by simpler additions and hardwired shifters so as to reduce power consumption and area size, if the coefficients of a digital filter are signed power-of-two (SPT). As a consequence, FIR digital filters with SPT coefficients have been widely studied in the last three decades. However, most approaches for the design of FIR filters with SPT coefficients focus on filters with length less than 100. These approaches are not suitable for the design of high-order filters because they require excessive computation time. In this paper, an approach for the design of high-order filters with SPT coefficients is proposed. It is a two-step approach. Firstly, the design of an extrapolated impulse response (EIR) filter is formulated as a standard second-order cone programming (SOCP) problem with an additional coefficient sensitivity constraint for optimizing its finite word-length effect. Secondly, the obtained continuous coefficients are quantized into SPT coefficients by recasting the filter-design problem into a weighted least squares (WLS) sequential quadratic programming relaxation (SQPR) problem. To further reduce implementation complexity, a graph-based common subexpression elimination (CSE) algorithm is utilized to extract common subexpressions between SPT coefficients. Simulation results show that the proposed method can effectively and efficiently design high-order SPT filters, including Hilbert transformers and half-band filters with SPT coefficients. Experiment results indicate that 0.81N∼0.29N adders are required for 18-bit N-order FIR filters (N=335∼3261) to meet the given magnitude response specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ait-Boudaoud, R. Cemes, Modified sensitivity criterion for the design of powers-of-two FIR filters. Electron. Lett. 29(16), 1467–1469 (1993)

    Article  Google Scholar 

  2. A. Avizienis, Signed-digit number representation for fast parallel arithmetic. IEE Trans. Electron. Comput. 10, 389–400 (1961)

    Article  MathSciNet  Google Scholar 

  3. L.C.R. de Barcellos, P.S.R. Diniz, S.L. Netto, A generalized oversampled structure for cosine-modulated transmultiplexers and filter banks. Circuits Syst. Signal Process. 25(2), 131–151 (2006)

    Article  MATH  Google Scholar 

  4. N. Benvenuto, M. Marchesi, A. Uncini, Applications of simulated annealing for the design of special digital filters. IEEE Trans. Signal Process. 40(2), 323–332 (1992)

    Article  Google Scholar 

  5. R. Bernstein, Multiplication by integer constants. Softw. Pract. Exp. 16(7), 641–652 (1986)

    Article  Google Scholar 

  6. D.R. Bull, D.H. Horrcks, Primitive operator digital filter. Proc. Inst. Electr. Eng.-Circuits Syst. Devices 138, 401–412 (1991)

    Article  Google Scholar 

  7. R. Cemes, D. Ait-Boudaoud, Genetic approach to design of multiplierless FIR filters. Electron. Lett. 29(24), 2090–2091 (1993)

    Article  Google Scholar 

  8. L. Cen, Frequency response masking filter design using an oscillation search genetic algorithm. J. Signal Process. 87(12), 3086–3095 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. C.L. Chen, A.N. Willson, A trellis search algorithm for the design of FIR filters with signed-powers-of-two coefficients. IEEE Trans. Circuits Syst. II 46(1), 29–39 (1999)

    Article  Google Scholar 

  10. A.G. Dempster, M.D. Macleod, Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Trans. Circuits Syst. II 42(9), 569–577 (1995)

    Article  MATH  Google Scholar 

  11. Z.G. Feng, K.L. Teo, A discrete filled function method for the design of FIR filters with signed-power-of-two coefficients. IEEE Trans. Signal Process. 56(1), 134–139 (2008)

    Article  MathSciNet  Google Scholar 

  12. R.I. Hartley, Subexpression sharing in filters using canonic signed-digit multipliers. IEEE Trans. Circuits Syst. II 43(10), 677–688 (1996)

    Article  Google Scholar 

  13. N. Hayasaka, N. Wada, S. Yoshizawa, Y. Miyanaga, A robust speech recognition system using FRM running spectrum filtering, in Proc. Int. Symp. Control, Commun. Signal Process ( 2004), pp. 401–404

    Chapter  Google Scholar 

  14. D. Kodek, K. Steiglitz, Comparison of optimal and local search methods for designing finite wordlength FIR digital filters. IEEE Trans. Circuits Syst. 28(1), 28–32 (1981)

    Article  Google Scholar 

  15. W.R. Lee, V. Rehbock, K.L. Teo, Frequency-response masking based FIR filter design with power-of-two coefficients and suboptimum PWR. J. Circuits Syst. Comput. 12(5), 591–600 (2003)

    Article  Google Scholar 

  16. D. Li, Y.C. Lim, Y. Lian, J. Song, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients. IEEE Trans. Signal Process. 50(8), 1935–1941 (2002)

    Article  Google Scholar 

  17. Y.C. Lim, S.R. Parker, FIR filter design over a discrete power-of-two coefficient space. IEEE Trans. Acoust. Speech Signal Process. 31, 583–591 (1983)

    Article  Google Scholar 

  18. Y.C. Lim, S.R. Parker, Discrete-coefficient FIR digital filter design based upon an LMS criteria. IEEE Trans. Circuits Syst. 30, 723–739 (1983)

    Article  MATH  Google Scholar 

  19. Y.C. Lim, Design of discrete-coefficient-value linear-phase FIR filters with optimum normalized peak ripple magnitude. IEEE Trans. Circuits Syst. 37, 1480–1486 (1990)

    Article  Google Scholar 

  20. Y.C. Lim, Y. Sun, Y.J. Yu, Design of discrete-coefficient FIR filters on loosely connected parallel machines. IEEE Trans. Signal Process. 50(6), 1409–1416 (2002)

    Article  Google Scholar 

  21. Y.C. Lim, Extrapolated impulse response FIR filter. IEEE Trans. Circuits Syst. 37, 1548–1551 (1990)

    Article  Google Scholar 

  22. Y.C. Lim, Y.J. Yu, K.L. Teo, T. Saramaki, FRM-based FIR filters with optimum finite word-length performance. IEEE Trans. Signal Process. 55, 2914–2924 (2007)

    Article  MathSciNet  Google Scholar 

  23. C.S. Lin, C. Kyriakakis, Frequency response masking approach for designing filter banks with rational sampling factors, in Proceeding of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, October 2003, pp. 99–102

    Google Scholar 

  24. M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-order cone programming. Linear Algebra Appl. 248, 193–228 (1998)

    Article  MathSciNet  Google Scholar 

  25. W.S. Lu, T. Hinamoto, Optimal design of IIR frequency-response masking filters using second-order cone programming. IEEE Trans. Circuits Syst. I 50(11), 1401–1412 (2003)

    Article  MathSciNet  Google Scholar 

  26. W.S. Lu, T. Hinamoto, A second-order cone programming approach for minimax design of 2-D FIR filters with low group delay, in Proc. IEEE Int. Symp. Circuits Syst., ISCAS’06, Island of Kos, Greece, May 2006, pp. 2521–2524

    Google Scholar 

  27. W.S. Lu, T. Hinamoto, Design of frequency-response masking FIR filters using SOCP with coefficient sensitivity constraint, in Proc. IEEE Int. Symp. Circuits Syst., ISCAS’08, May 2008, pp. 2442–2445

  28. W.S. Lu, Design of FIR digital filters with discrete coefficients via convex relaxation, in Proc. 2005 Int. Symp. Circuits Syst., vol. 2, May 2005, pp. 1831–1834

    Google Scholar 

  29. M.D. Macleod, A.G. Dempster, Multiplierless FIR filter design algorithms. IEEE Signal Process. Lett. 12(3), 186–189 (2005)

    Article  Google Scholar 

  30. R. Mahesh, A.P. Vinod, Reconfigurable frequency response masking filters for software radio channelization. IEEE Trans. Circuits Syst. II 55(3), 274–278 (2008)

    Article  Google Scholar 

  31. M. Potkonjak, M.B. Srivastava, A.P. Chandrakasan, Multiple constant multiplications: Efficient and versatile framework and algorithms for exploring common subexpression elimination. IEEE Trans. Comput.-Aided Des. 15(2), 151–165 (1996)

    Article  Google Scholar 

  32. H. Samueli, The design of multiplierless digital data transmission filters with powers-of-two coefficients, in Proc. IEEE Int. Telecomm. Symp., 3–6 September 1990, pp. 425–429

    Google Scholar 

  33. H. Shaffeu, M.M. Jones, H.D. Griffiths, J.T. Taylor, Improved design procedure for multiplierless FIR digital filters. Electron. Lett. 27(13), 1142–1144 (1991)

    Article  Google Scholar 

  34. J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999) (Version 1.1R2 of SeDuMi is available at http://sedumi.mcmaster.ca/)

    Article  MathSciNet  Google Scholar 

  35. K.M. Tsui, S.C. Chan, K.S. Yeung, Design of FIR digital filters with prescribed flatness and peak error constraints using second-order cone programming. IEEE Trans. Circuits Syst. II 2(9), 601–605 (2005)

    Article  Google Scholar 

  36. A.P. Vinod, E.M.-K. Lai, On the implementation of efficient channel filters for wideband receivers by optimizing common subexpression elimination methods. IEEE Trans. Comput.-Aided Des. 24(2), 295–304 (2005)

    Article  Google Scholar 

  37. Y. Voronenko, M. Püschel, Multiplierless multiple constant multiplication. ACM Trans. Algorithms 3, 1–38 (2007)

    Article  Google Scholar 

  38. F. Xu, C.H. Chang, C.C. Jong, Design of low-complexity FIR filters based on signed-powers-of-two coefficients with reusable common subexpressions. IEEE Trans. Comput.-Aided Des. 26(10), 1898–1907 (2007)

    Article  Google Scholar 

  39. Y.J. Yu, Y.C. Lim, Roundoff noise analysis of signals represented using signed power-of-two terms. IEEE Trans. Signal Process. 55(5), 1409–1416 (2007)

    Article  MathSciNet  Google Scholar 

  40. Y.J. Yu, Y.C. Lim, Design of linear phase FIR filters in subexpression space using mixed integer linear programming. IEEE Trans. Circuits Syst. 54(10), 2330–2338 (2007)

    Article  MathSciNet  Google Scholar 

  41. Y.J. Yu, Y.C. Lim, Genetic algorithm approach for the optimization of multiplierless sub-filters generated by the frequency-response masking technique, in IEEE Ninth Int. Conf. Electron. Circuits Syst., vol. 3, September 2002, pp. 1163–1166

    Chapter  Google Scholar 

  42. Y.J. Yu, D. Shi, Y.C. Lim, Subexpression encoded extrapolated impulse response FIR filter with perfect residual compensation, in Proc. IEEE Int. Symp. Circuits Syst., ISCAS’08, May 2008, pp. 2446–2449

    Google Scholar 

  43. Y.J. Yu, D. Shi, Y.C. Lim, Design of extrapolated impulse response FIR filters with residual compensation in subexpression space. IEEE Trans. Circuits Syst. I 55, 2621–2633 (2009)

    MathSciNet  Google Scholar 

  44. L.H. Zhou, W.J. Pei, Z.Y. He, Extrapolated impulse response filter using coefficient autocorrelation matrix decomposition. Signal Process. 88, 1762–1774 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Wang, K., Pei, W. et al. Design of High-Order Extrapolated Impulse Response FIR Filters with Signed Powers-of-Two Coefficients. Circuits Syst Signal Process 30, 963–985 (2011). https://doi.org/10.1007/s00034-010-9259-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9259-4

Keywords

Navigation