Skip to main content
Log in

A Control Theoretical Approach to the Polynomial Spectral-Factorization Problem

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

It is shown how, by analogy to analogue control theory, the problem of spectral factorization can be solved using negative feedback. The method is particularly simple to implement and can easily be used in real-time applications. It is shown how the method can blindly identify or track the moving-average (MA) model of a signal generating process using only second-order statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ahlen, M. Sternad, Wiener filter design using polynomial equations. IEEE Trans. Signal Process. 39(11), 2387–2399 (1991)

    Article  MATH  Google Scholar 

  2. J.F. Barrett, T.J. Moir, A unified approach to multivariable discrete-time filtering based on the Wiener-theory. Kybernetika 23(3), 177–197 (1987)

    MathSciNet  MATH  Google Scholar 

  3. H. Boche, V. Pohl, Behaviour of the spectral factorization for continuous spectral densities. Signal Process. 87(5), 1078–1088 (2007)

    Article  MATH  Google Scholar 

  4. C. Charoenlarpnopparut, One-dimensional and multidimensional spectral factorization using Gröbner basis approach, in APPC on Communications Bangkok (2007), pp. 201–204

    Google Scholar 

  5. F. Desbouvries, I. Fijalkow, P. Loubaton, On the identification of noisy MA models. IEEE Trans. Autom. Control 41(12), 1810–1814 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Fomel, P. Sava, J. Rickett, J. Claerbout, The Wilson-Burg method of spectral factorization with application to helical filtering. Geophys. Prospect. 51, 409–420 (2003)

    Article  Google Scholar 

  7. M.J. Grimble, H infinity fixed-lag smoothing filter for scalar systems. IEEE Trans. Signal Process. 39(9), 1955–1963 (1991)

    Article  MATH  Google Scholar 

  8. P. Hagander, B. Wittenmark, A self-tuning filter for fixed-lag smoothing. IEEE Trans. Inf. Theory 23(3), 377–384 (1977)

    Article  MATH  Google Scholar 

  9. M.H. Hayes, Statistical Digital Signal Processing and Modelling (Wiley, New York, 1996)

    Google Scholar 

  10. S. Haykin, Adaptive Filter Theory (Prentice Hall, Englewood Cliffs, 1986)

    Google Scholar 

  11. A.N. Kolmogorov, Stationary sequences in Hilbert space. Bull. Moscow State Univ. 2(6), 1–40 (1941). English Trans. in Linear Least Squares Estimation, ed. by T. Kailath (Dowden, Hutchinson & Ross, Pennsylvania, 1977), pp. 66–89

    MathSciNet  Google Scholar 

  12. V. Kucera, Discrete Linear Control, the Polynomial Equation Approach (Wiley, New York, 1991)

    Google Scholar 

  13. D.I. Laurenson, D.G.M. Cruickshank, G.J.R. Povey, A computationally efficient multipath channel simulator for the COST 207 models, in IEE Colloquium on Computer Modelling of Communication Systems (1994), pp. 8/1–8/6

    Google Scholar 

  14. L.M. Li, Li Factorization of moving-average spectral densities by state-space representations and stacking. J. Multivar. Anal. 96(2), 425–438 (2005)

    Article  MATH  Google Scholar 

  15. T.J. Moir, Stabilizing discrete polynomials using spectral factorization. Electron. Lett. 27(7), 581–583 (1991)

    Article  MATH  Google Scholar 

  16. T.J. Moir, Equivalence between state-space and polynomial methods for discrete LQG control. Syst. Sci. (Tech. Univ. Wroclaw) 20(4), 5–17 (1994)

    MathSciNet  MATH  Google Scholar 

  17. T.J. Moir, Control theoretical approach to multivariable spectral factorisation problem. Electron. Lett. 45(24), 1215–1216 (2009)

    Article  Google Scholar 

  18. T.J. Moir, J.F. Barrett, A Wiener-theory of digital linear-quadratic control. Int. J. Control 49(6), 2123–2155 (1989)

    MathSciNet  MATH  Google Scholar 

  19. D. Napp Avelii, H.J. Trentelman, Algorithms for multidimensional spectral factorization next term and sum of squares. Linear Algebra Appl. 429(5–6), 1114–1134 (2008)

    Article  MathSciNet  Google Scholar 

  20. C. Oara, Constructive solutions to spectral and inner–outer factorizations with respect to the disk. Automatica 41(11), 1855–1866 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Parra, C. Spence, Convolutive blind separation of non-stationary sources. IEEE Trans. Speech Audio Process. 8(3), 320–327 (2000)

    Article  Google Scholar 

  22. A.H. Sayed, T. Kailath, A survey of spectral factorization methods. Numer. Linear Algebra Appl. 8, 467–496 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Senjian, J.H. Manton, H. Yingbo, A sequential subspace method for blind identification of general FIR MIMO channels. IEEE Trans. Signal Process. 53(10), 3906–3910 (2005)

    Article  MathSciNet  Google Scholar 

  24. B. Taub, Implementing the Iakoubovski–Merino spectral factorization next term algorithm using state–space methods. Syst. Control Lett. 58(6), 445–451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Welch, The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)

    Article  MathSciNet  Google Scholar 

  26. N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series (Wiley, New York, 1949)

    MATH  Google Scholar 

  27. G. Wilson, Factorization of the covariance generating function of a pure moving-average process. SIAM J. Numer. Anal. 6, 1–7 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. G.T. Wilson, The factorization of matricial spectral densities. SIAM J. Appl. Math. 23(4), 420–426 (1972)

    Article  MathSciNet  Google Scholar 

  29. D.C. Youla, On the factorization of rational matrices. IRE Trans. Inf. Theory IT-7, 172–189 (1961)

    Article  Google Scholar 

  30. D.C. Youla, N. Kazanjian, Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle. IEEE Trans. Circuits Syst. 25(2), 57–69 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Moir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moir, T.J. A Control Theoretical Approach to the Polynomial Spectral-Factorization Problem. Circuits Syst Signal Process 30, 987–998 (2011). https://doi.org/10.1007/s00034-011-9270-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9270-4

Keywords

Navigation