Skip to main content
Log in

A Carrier Recovery Loop for Cognitive Radio Applications

  • Cognitive Radio-based Wireless Communication Devices
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The increasing demands for wireless communication, especially in consumer electronics applications, result in substantially and continuously increasing reliability and quality of service (QoS) requirements. This trend creates a need to introduce intelligent functionalities in the wireless devices, which leads to the concept of cognitive radio (CR) technology. In some CR applications such as dynamic spectrum access (DSA), the CR terminal should be able to modify its transmission parameters in order to communicate with an efficient utilization of the spectrum resource. In such a case, the CR terminal would be capable of reconfiguring itself with minimum supplementary information to achieve best performance. In this paper we propose a blind carrier recovery loop with respect to the modulation scheme suited to CR applications. Unlike conventional solutions which use a separate modulation identification device before performing carrier recovery, the introduced loop employs a hierarchical symbol decision to achieve phase lock, and then the S-curve and the variance of a decision directed phase error detector are used to extract an information about the modulation scheme of the incoming signal. After the phase lock with the hierarchical decision, the constellation used in the received signal is detected, and then the true decisions are used to drive the recovery loop. Results obtained with different digital linear modulations (8-PSK, 16-QAM 16-APSK, 64-QAM) indicate that the introduced loop is capable of achieving a real-time modulation scheme detection as well as keeping phase lock for adaptive modulation scheme transmissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Arslan, Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems (Springer, Berlin, 2007)

    Book  Google Scholar 

  2. O. Azarmanesh, S. Bilén, A novel modulation-classification technique for software defined radio applications, in SDR’08 Conference, November 2008

    Google Scholar 

  3. L. Berlemann, S. Mangold, Cognitive Radio and Dynamic Spectrum Access (Wiley, New York, 2009)

    Book  Google Scholar 

  4. S. Bilén, A. Price, O. Azarmanesh, J. Urbina, Modulation classification for radio interoperability via SDR, in SDR’07 Conference, November 2007

    Google Scholar 

  5. M. Cave, C. Doyle, W. Webb, Essentials of Modern Spectrum Management, Cambridge Wireless Essentials Series (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  6. R. De Gaudenzi, A. Guillen i Fabregas, A. Martinez, Performance analysis of turbo-coded APSK modulations over nonlinear satellite channels, IEEE Trans. Wireless Commun., 2396–2407 (2006)

  7. R. De Gaudenzi, A. Guillen i Fabregas, A. Martinez, A. Ponticelli, High power and spectral efficiency coded digital modulation schemes for nonlinear satellite channels, in Seventh International Workshop on Digital Signal Processing Techniques for Space Communications, Sesimbra, Portugal, Oct 2001

    Google Scholar 

  8. O.A. Dobre, Y. Bar-Ness, Blind modulation classification: a concept whose time has come, in IEEE/Sarnoff Symposium, April 18–19 2005, pp. 223–228

    Chapter  Google Scholar 

  9. O.A. Dobre, A. Abdi, Y. Bar-Ness, W. Su, A survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun. 1(2) (2007)

  10. G. Faria, DVB-T hierarchical modulation—an opportunity for new services (1999)

  11. B. Fette, Cognitive Radio Technology, 2nd edn. (Academic Press, New York, 2009)

    Google Scholar 

  12. F.M. Gardner, Demodulator reference recovery techniques suited for digital implementation, European Space Agency, Final Report, ESTEC Contract No. 6847/86/NL/DG, Aug. 1988

  13. T. Jesupret, M. Moeneclaey, G. Ascheid, Digital demodulator synchronization performance analysis, European Space Agency, Final Report, ESTEC Contract No. 8437/89/NL/RE, June 1991

  14. P.Y. Kam, Maximum likelihood carrier phase recovery for linear suppressed-carrier digital data modulations. IEEE Trans. Commun. COM-34, 522–527 (1986)

    Google Scholar 

  15. G. Karam, J. Kervarec, H. Sari, P. Vandamme, All-digital implementation of the carrier recovery loop in digital radio system, in International Conference on Communications, Denver, CO, USA, June 23–26 1991

    Google Scholar 

  16. A. Leclert, P. Vandamme, Universal carrier recovery loop for QASK and PSK signal sets. IEEE Trans. Commun. COM-31, 130–136 (1983)

    Article  Google Scholar 

  17. W.C. Lindsey, M.K. Simon, Carrier synchronization and detection of polyphase signals. IEEE Trans. Commun. 20, 441–454 (1972)

    Article  Google Scholar 

  18. U. Mengali, A.N. D’Andrea, Synchronization Techniques for Digital Receivers, Applications of Communication Theory (Plenum, New York, 1997)

    Google Scholar 

  19. A. Metref, D. Le Guennec, J. Palicot, Optimized decision-directed carrier recovery loop for 16-QAM constellations, in Global Telecommunications Conference GLOBECOM ’07, Washington DC, USA, November 26–30 2007

    Google Scholar 

  20. A. Metref, D. Le Guennec, J. Palicot, S-curve theoretical analysis of a classical and a hierarchical phase detector for QAM constellations, in Seventh IEEE International Symposium on Signal Processing and Information Technology ISSPIT ’07, Cairo, Egypt, December 15–18 2007

    Google Scholar 

  21. A. Metref, D.L. Guennec, J. Palicot, Hierarchical decision based carrier recovery in a software radio context, in IEEE Proc. WSR, Karlsruhe, Germany, March 2008

    Google Scholar 

  22. H. Meyr, M. Moeneclaey, S.A. Fechtel, Digital Communication Receivers, Synchronization, Channel Estimation and Signal Processing, Wiley Series in Telecommunications and Signal Processing (1998)

    Google Scholar 

  23. R.H. Morelos-Zaragoza, K. Umebayashi, A carrier recovery technique using modulation identification, in International Conference on Third Generation Wireless and Beyond 3GWireless’01, San Francisco, CA, May 30–June 2 2001

    Google Scholar 

  24. S. Moridi, H. Sari, Analysis of four decision-feedback carrier recovery loops in the presence of intersymbol interference. IEEE Trans. Commun. COM-33, 543–550 (1985)

    Article  Google Scholar 

  25. D. Mottier, Associations des fonctions d’égalisation, de synchronisation et de décodage canal pour les transmissions numériques à grande efficacité spectrale, Ph.D. thesis, Institut National des Sciences Appliquées de Rennes, 1997

  26. P. Pinto, S. Silva, H. Miranda, An adaptive software radio receiver architecture for linear bidimensional modulations, in 6th Baiona Workshop on Signal Processing in Communications, Baiona, Spain, September 2003

    Google Scholar 

  27. H. Sari, S. Moridi, New phase and frequency detectors for carrier recovery in PSK and QAM systems. IEEE Trans. Commun. COM-36, 1035–1043 (1988)

    Article  Google Scholar 

  28. A. Schertz, C. Weck, Hierarchical modulation—the transmission of two independent DVB-T multiplexes on a single frequency, EBU Technical review, April 2003

  29. M.K. Simon, J.G. Smith, Carrier synchronization and detection of QASK signal sets. IEEE Trans. Commun. COM-22, 98–106 (1974)

    Article  Google Scholar 

  30. N.M.B. Souto, F.A.B. Cercas, R.Y.M. Dinis, J.C.M. Silva, On the BER performance of hierarchical M-QAM constellations with diversity and imperfect channel estimation. IEEE Trans. Commun. 55, 1852–1856 (2007)

    Article  Google Scholar 

  31. K. Umebayashi, R.H. Morelos-Zaragoza, Evaluation of the multimode PLL using the modulation identification techniques in ISDB-S, in SDR’04 Conference, November 2004

    Google Scholar 

  32. K. Umebayashi, R.H. Morelos-Zaragoza, R. Kohno, Method of non-data-aided carrier recovery with modulation identification. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A(3), 656–665 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Le Guennec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metref, A., Le Guennec, D. & Palicot, J. A Carrier Recovery Loop for Cognitive Radio Applications. Circuits Syst Signal Process 30, 847–870 (2011). https://doi.org/10.1007/s00034-011-9307-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9307-8

Keywords

Navigation