Skip to main content
Log in

Numerical Stability Verification of a Two-Dimensional Time-Dependent Nonlinear Shallow Water System Using Multidimensional Wave Digital Filtering Network

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper aims to study the stability effects of a two-dimensional time-dependent nonlinear shallow water (NLSW) system based on the concordance analysis of necessary and sufficient conditions derived from a multidimensional wave digital filtering (MDWDF) network. Approximating the differential equations used to describe elements of a MD passive electrical circuit by grid-based difference equations, the satisfactory Courant–Friedrichs–Levy condition usually known to be necessary are derived with various initial conditions to provide theoretical support for the existence of a MD passive dynamical system and thus stability of the discrete equivalent. Together with the evaluation of the system’s energy and hence solution error propagation that both arise directly and sufficiently to the stability of MDWDF networks, the numerical convergence of the network can be fully established. As a consequence, all instability related aspects in relation to computational errors and overflow corrections are fully excluded leading to uniquely a high degree of robustness of MDWDF architecture. Feasible comparisons are made with a finite element method implemented in the COMSOL Multiphysics to confirm the verification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. (Dover, New York, 1972)

    MATH  Google Scholar 

  2. V.D. Blondel, J.N. Tsitsiklis, A survey of computational complexity results in systems and control. Automatica 36, 1249–1274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Comer, Tsunami generation: a comparison of traditional and normal mode approaches. Geophys. J. Int. 77(1), 29–41 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. COMSOL AB, COMSOL Multiphysics User’s Guide, version 3.5a (2008)

  5. V. Casulli, R. Walters, An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Methods Fluids 32, 331–348 (2000)

    Article  MATH  Google Scholar 

  6. R.G. Dean, R.A. Dalrymple, Water Wave Mechanics for Engineers and Scientists (World Scientific, Singapore, 1984), 353 pp.

    Google Scholar 

  7. A. Fettweis, K. Meerkötter, On parasitic oscillations in digital filters under looped conditions. IEEE Trans. Circuits Syst. 24, 475–481 (1977)

    Article  MATH  Google Scholar 

  8. A. Fettweis, Wave-digital filters: theory and practice. Proc. IEEE 74, 270–327 (1986)

    Article  Google Scholar 

  9. A. Fettweis, G. Nitsche, Numerical integration of partial differential equations using principles of multidimensional wave-digital filters. J. VLSI Signal Process. 3, 7–24 (1991)

    Article  MATH  Google Scholar 

  10. A. Fettweis, G. Nitsche, Transformation approach to numerical integrating PDEs by means of WDF principles. Multidimens. Syst. Signal Process. 2, 127–159 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Fettweis, Robust numerical integration using wave-digital concepts. Multidimens. Syst. Signal Process. 17, 7–25 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Goto, Y. Ogawa, N. Shuto, N. Imamura, Numerical method of tsunami simulation with the leap-frog scheme (IUGG/ IOC Time Project), IOC manual. UNESCO 3 (1997)

  13. P.A. Guard, T. Baldock, P. Nielsen, General solutions for the initial run-up of a breaking tsunami front, in Inter. Sym. Disaster Reduction on Coasts Scientific-Sustainable-Holistic-Accessible, Melbourne, Australia (2005)

    Google Scholar 

  14. G. Hemetsberger, Stability verification of multidimensional Kirchhoff circuits by suitable energy functions, in Proceedings IEEE ICASSP1994, Australia (1994)

    Google Scholar 

  15. E. Hanert, D. Le Roux, V. Legat, An efficient Eulerian finite element method for the shallow water equations. Ocean Model. 10, 115–136 (2005)

    Article  Google Scholar 

  16. G. Hetmanczyk, Exploiting the parallelism of multidimensional wave digital algorithms on multicore computers. Multidimens. Syst. Signal Process. 21, 45–58 (2009)

    Article  Google Scholar 

  17. T. Iguchi, A mathematical analysis of tsunami generation in shallow water due to seabed deformation. Proc. R. Soc. Edinb., Sect. A, Math. 141, 551–608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Kummert, Derivation of an adaptive algorithm for IIR digital systems realized by power-wave digital filters. Circuits Syst. Signal Process. 9, 241–269 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Z. Kowalik, T.S. Murty, Numerical Modeling of Ocean Dynamics, Advanced Series on Ocean Engineering (World Scientific, London, 1993)

    Book  Google Scholar 

  20. C. Kim, Maintaining the stability of a leapfrog scheme in the presence of source terms. Int. J. Numer. Methods Fluids 42, 839–852 (2003)

    Article  MATH  Google Scholar 

  21. S. Lawson, A. Mirzai, Wave Digital Filters. Ellis Horwood Series in Digital and Signal Processing (Horwood, New York, 1990)

    Google Scholar 

  22. J.J. More, D.C. Sorensen, Computing a trust region step. SIAM J. Sci. Stat. Comput. 3, 553–572 (1983)

    MathSciNet  Google Scholar 

  23. A. Madanayake, L.T. Bruton, Multidimensional raster-scanned LC-ladder wave-digital filter hardware for directional filtering in space-time, in ISCAS2010, (2010), pp. 1005–1008

    Google Scholar 

  24. N.E. Mastorakis, M.N.S. Swamy, A new method for computing the stability margin of two-dimensional continuous systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49, 869–872 (2002)

    Article  MathSciNet  Google Scholar 

  25. P.A. Ramamoorthy, L.T. Bruton, Design of stable two-dimensional analog and digital filters with applications in image processing. Int. J. Circuit Theory Appl. 7, 229–245 (1979)

    Article  MATH  Google Scholar 

  26. P.J. Roache, Verification and Validation in Computational Science and Engineering (1998). Hermosa Publishers, NM

    Google Scholar 

  27. L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector fields. Syst. Control Lett. 19, 467–473 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Schauland, J. Velten, A. Kummert, Motion-based object detection for automotive applications using multidimensional wave digital filters, in IEEE Vehicular Technology Conference, (2008), pp. 2700–2704

    Google Scholar 

  29. M.N.S. Swamy, L.M. Roytman, J.F. Delansky, Finite word length effect and stability of multidimensional digital filters. Proc. IEEE 69, 1370–1372 (1981)

    Article  Google Scholar 

  30. E.D. Sontag, A universal construction of artstein’s theorem on nonlinear stabilization. Syst. Control Lett. 13, 117–123 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. C.E. Synolakis, E.N. Bernard, V.V. Titov, U. Kanoglu, F.I. Gonzalez, Validation and verification of tsunami numerical models. Pure Appl. Geophys. 165, 2197–2228 (2008)

    Article  Google Scholar 

  32. A.A. Samarskij, Theorie der Differenzenverfahren (Akademische Verlagsgesellschaft, Leipzig, 1984)

    MATH  Google Scholar 

  33. C.H. Tseng, S. Lawson, Discrete modelling of shallow water equations using the multidimensional wave-digital filters, in Proc. IEEE ECCTD2003, Poland (2003)

    Google Scholar 

  34. C.H. Tseng, S. Lawson, Initial and boundary conditions in multidimensional wave digital filter algorithms for plate vibration. IEEE Trans. Circuits Syst. 51, 1648–1663 (2004)

    Article  MathSciNet  Google Scholar 

  35. C.H. Tseng, S. Lawson, Full parallel process for multidimensional wave digital filtering via multidimensional retiming technique, in ISCAS, Vancouver, Canada (2004)

    Google Scholar 

  36. C.H. Tseng, S. Lawson, Multidimensional wave-digital filtering approach for numerical integration of non-linear shallow water equations, in ISCAS2004, Canada (2004)

    Google Scholar 

  37. C.H. Tseng, Modelling and visualization of a time-dependent shallow water system using nonlinear Kirchhoff circuit. IEEE Trans. Circuits Syst. 59, 1265–1277 (2012)

    Article  Google Scholar 

  38. Y. Yamazaki, Z. Kowalik, K.F. Cheun, Depth-integrated, non-hydrostatic model for wave breaking and run-up. Int. J. Numer. Methods Fluids (2008). doi:10.1002/fld.1952

    Google Scholar 

  39. M. Zijlema, G. Stelling, Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coast. Eng. 55, 780–790 (2008)

    Article  Google Scholar 

  40. X. Zhao, B. Wang, H. Liu, Propagation and runup of tsunami waves with boussinesq model, in Proc. Inter. Conf. Coastal Eng, vol. 32 (2010). ISSN:2156-1028

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-H. Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, CH. Numerical Stability Verification of a Two-Dimensional Time-Dependent Nonlinear Shallow Water System Using Multidimensional Wave Digital Filtering Network. Circuits Syst Signal Process 32, 299–319 (2013). https://doi.org/10.1007/s00034-012-9461-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9461-7

Keywords

Navigation