Skip to main content
Log in

Dual-Miller Parallel Compensation for Low-Power Three-Stage Amplifier with a Wide Range of Capacitive Loads

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a dual-Miller parallel compensation (DMPC) technique for low-power three-stage amplifier is presented with detailed theoretical analysis. A feedback network realized by capacitor and transconductance is added between the first and third stage, which improves significantly the performance when driving large capacitive loads. Furthermore, it is found to be stable for a wide range of capacitive loads. The proposed DMPC amplifier has been implemented in a 0.13-μm CMOS process and the chip area is 0.17×0.11 mm2. It achieves a 0.87 MHz gain-bandwidth product by consuming a total current of 41 μA. The DMPC amplifier is verified to be stable when the load capacitor ranges from 8 pF to 2 nF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design, 2nd edn. (Oxford University, Oxford, 2002)

    Google Scholar 

  2. S.S. Chong, P.K. Chan, Cross feedforward cascode compensation for low-power three-stage amplifier with large capacitive load. IEEE J. Solid-State Circuits 47, 1–8 (2012)

    Article  Google Scholar 

  3. R.G.H. Eschauzier, J.H. Huijsing, Frequency Compensation Techniques for Low-Power Operational Amplifiers (Kluwer, Boston, 1995)

    Book  Google Scholar 

  4. R.G.H. Eschauzier, L.P.T. Kerklaan, J.H. Huijsing, A 100-MHz 100-dB operational amplifier with multipath nested Miller compensation structure. IEEE J. Solid-State Circuits 27, 1709–1717 (1992)

    Article  Google Scholar 

  5. R.G.H. Eschauzier, R. Hogervorst, J.H. Huijsing, A programmable 1.5 V CMOS class-AB operational amplifier with hybrid nested Miller compensation for 120 dB gain and 6 MHz UGF. IEEE J. Solid-State Circuits 29, 1497–1504 (1994)

    Article  Google Scholar 

  6. X. Fan, C. Mishra, E. Sánchez-Sinencio, Single Miller capacitor frequency compensation technique for low-power multistage amplifiers. IEEE J. Solid-State Circuits 40, 584–592 (2005)

    Article  Google Scholar 

  7. A.D. Grasso, D. Marano, G. Palumbo, S. Pennisi, Improved reversed nested Miller compensation technique with voltage buffer and nulling resistor. IEEE Trans. Circuits Syst. II 54, 382–386 (2007)

    Article  Google Scholar 

  8. A.D. Grasso, G. Palumbo, S. Pennisi, Advances in reversed nested Miller compensation. IEEE Trans. Circuits Syst. I 54, 1459–1470 (2007)

    Article  Google Scholar 

  9. S. Guo, H. Lee, Single-capacitor active-feedback compensation for small-capacitive-load three-stage amplifiers. IEEE Trans. Circuits Syst. II 56, 758–762 (2009)

    Article  Google Scholar 

  10. S. Guo, H. Lee, Dual active-capacitive-feedback compensation for low-power large-capacitive-load three-stage amplifiers. IEEE J. Solid-State Circuits 46, 452–464 (2011)

    Article  Google Scholar 

  11. K.P. Ho, C.F. Chan, C.S. Choy, K.P. Pun, Reversed nested Miller compensation with voltage buffer and nulling resistor. IEEE J. Solid-State Circuits 38, 1735–1738 (2003)

    Article  Google Scholar 

  12. J.H. Huijsing, Operational Amplifier—Theory and Design, 2nd edn. (Springer, Berlin, 2011)

    Book  Google Scholar 

  13. Y.B. Kamath, R.G. Meyer, P.R. Gray, Relationship between frequency response and settling time of operational amplifiers. IEEE J. Solid-State Circuits 9, 347–352 (1974)

    Article  Google Scholar 

  14. H. Lee, P.K.T. Mok, Active-feedback frequency-compensation technique for low-power multistage amplifiers. IEEE J. Solid-State Circuits 38, 511–520 (2003)

    Article  Google Scholar 

  15. H. Lee, P.K.T. Mok, Advances in active-feedback frequency compensation with power optimization and transient improvement. IEEE Trans. Circuits Syst. I 51, 1690–1696 (2004)

    Article  Google Scholar 

  16. H. Lee, K.N. Leung, P.K.T. Mok, A dual-path bandwidth extension amplifier topology with dual-loop parallel compensation. IEEE J. Solid-State Circuits 38, 1739–1744 (2003)

    Article  Google Scholar 

  17. K.N. Leung, P.K.T. Mok, Analysis of multistage amplifier-frequency compensation. IEEE Trans. Circuits Syst. I 48, 1041–1056 (2001)

    Article  Google Scholar 

  18. K.N. Leung, P.K.T. Mok, W.H. Ki, J.K.O. Sin, Three-stage large capacitive load amplifier with damping-factor-control frequency compensation. IEEE J. Solid-State Circuits 35, 221–230 (2000)

    Article  Google Scholar 

  19. R. Mita, G. Palumbo, S. Pennisi, Design guidelines for reversed nested Miller compensation in three-stage amplifiers. IEEE Trans. Circuits Syst. II 50, 227–233 (2003)

    Article  Google Scholar 

  20. X. Peng, W. Sansen, AC boosting compensation scheme for low-power multistage amplifiers. IEEE J. Solid-State Circuits 39, 2074–2079 (2004)

    Article  Google Scholar 

  21. X. Peng, W. Sansen, Transconductance with capacitances feedback compensation for multistage amplifiers. IEEE J. Solid-State Circuits 40, 1514–1520 (2005)

    Article  Google Scholar 

  22. X. Peng, W. Sansen, L. Hou, J. Wang, W. Wu, Impedance adapting compensation for low-power multistage amplifiers. IEEE J. Solid-State Circuits 46, 445–451 (2011)

    Article  Google Scholar 

  23. J. Ramos, M. Steyaert, Positive feedback frequency compensation for low-voltage low-power three-stage amplifier. IEEE Trans. Circuits Syst. I 51, 1967–1974 (2004)

    Article  Google Scholar 

  24. Z. Yan, P.I. Mak, M.K. Law, R.P. Martins, A 0.016-mm2 144-μW three-stage amplifier capable of driving 1-to-15 nF capacitive load with 0.95 MHz GBW, in Int. Solid-State Circuits Conf, (2012), pp. 368–370

    Google Scholar 

  25. Z. Yan, P.I. Mak, M.K. Law, R.P. Martins, Ultra-area-efficient three-stage amplifier using current buffer Miller compensation and parallel compensation. IEE Electron. Lett. 48, 624–625 (2012)

    Article  Google Scholar 

  26. F. You, S.H.K. Embabi, E. Sánchez-Sinencio, Multistage amplifier topologies with nested G m C compensation. IEEE J. Solid-State Circuits 32, 2000–2011 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (No. 61274027) and under Grant No. 51308020305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, P., Luo, P., Zhen, S. et al. Dual-Miller Parallel Compensation for Low-Power Three-Stage Amplifier with a Wide Range of Capacitive Loads. Circuits Syst Signal Process 33, 287–297 (2014). https://doi.org/10.1007/s00034-013-9626-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9626-z

Keywords

Navigation