Skip to main content
Log in

Neural Network-Based IIR All-Pass Filter Design

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a neural network-based Lyapunov energy function for the weighted least-squares design of IIR all-pass filters. In the proposed method, the error reflecting the difference between the desired phase response and the phase of the designed IIR all-pass filter is formulated as a Lyapunov error criterion. Based on the neural network architecture and suitable Hopfield parameters, the optimal filter coefficients can be obtained when convergence is achieved. Furthermore, a weight updating function is proposed to achieve accurate approximation of the equiripple response. The simulation results indicate that the proposed technique can achieve high performance in a parallel manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Bhattacharya, A. Antoniou, Real-time design of FIR filters by feedback neural networks. IEEE Signal Process. Lett. 3(5), 158–161 (1996)

    Article  Google Scholar 

  2. D. Bhattacharya, A. Antoniou, Design of equiripple FIR filters using a feedback neural network. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45(4), 527–531 (1998)

    Article  MATH  Google Scholar 

  3. S. Bilbao, Time-varying generalization of all-pass filters. IEEE Signal Process. Lett. 12(5), 376–379 (2005)

    Article  Google Scholar 

  4. S.C. Chan, H.H. Chen, C.K. Pun, The design of digital all-pass filters using second-order cone programming (SOCP). IEEE Trans. Circuits Syst. II, Express Briefs 52(2), 66–70 (2005)

    Article  Google Scholar 

  5. C.K. Chen, J.H. Lee, Design of digital all-pass filters using a weighted least squares approach. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 41(5), 346–351 (1994)

    Article  Google Scholar 

  6. J.A. Freeman, D.M. Skapura, Neural Network-Algorithms, Applications and Programming Techniques (Addison-Wesley, Reading, 1991)

    Google Scholar 

  7. K. Gao, M.O. Ahmad, M.N.S. Swamy, Neural LS estimator with a non-quadratic energy function, in Proc. of Int. Conf. on ICASSP, Apr. 1991, pp. 1041–1044

    Google Scholar 

  8. J.J. Hopfield, D.W. Tank, Neural computation of decision in optimization problems. Biol. Cybern. 52, 141–152 (1982)

    MathSciNet  Google Scholar 

  9. M. Ilehara, M. Funaishi, H. Kuroda, Design of all-pass networks using Remez algorithm, in Proc. IEEE Int. Symp. Circuits and Systems, Jun. 1991, pp. 364–367

    Google Scholar 

  10. Z. Jing, A new method for digital all-pass filter design. IEEE Trans. Acoust. Speech Signal Process. 35(11), 1557–1564 (1987)

    Article  Google Scholar 

  11. Y.D. Jou, Design of real FIR filters with arbitrary magnitude and phase specifications using a neural-based approach. IEEE Trans. Circuits Syst. II, Express Briefs 53(10), 1068–1072 (2006)

    Article  Google Scholar 

  12. Y.D. Jou, Design of two-channel linear-phase quadrature mirror filter banks based on neural networks. Signal Process. 87(5), 1031–1044 (2007)

    Article  MATH  Google Scholar 

  13. Y.D. Jou, F.K. Chen, L.C. Su, C.M. Sun, Weighted least-squares design of IIR all-pass filters using a Lyapunov error criterion, in 2010 IEEE Asia–Pacific Conference on Circuits and Systems, Dec. 2010, pp. 1071–1074

    Google Scholar 

  14. S.S. Kidambi, Weighted least-squares design of recursive all-pass filters. IEEE Trans. Signal Process. 44(6), 1553–1557 (1996)

    Article  Google Scholar 

  15. S.S. Kidambi, Closed-form approach to design of all-pass digital filters using cepstral coefficients. Electron. Lett. 40(12), 720–721 (2004)

    Article  Google Scholar 

  16. T.I. Laakso, V. Valimaki, M. Karjalainen, U.M. Laine, Splitting the unit delay: tools for fractional delay filter design. IEEE Signal Process. Mag. 13(1), 30–60 (1996)

    Article  Google Scholar 

  17. M. Lang, T.I. Laakso, Simple and robust method for the design of allpass filters using least-squares phase error criterion. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 41(1), 40–48 (1994)

    Article  Google Scholar 

  18. M. Lang, All-pass filter design and applications. IEEE Trans. Signal Process. 46(9), 2505–2514 (1998)

    Article  Google Scholar 

  19. J.H. Lee, Y.H. Yang, Design of two-channel linear-phase QMF banks based on real IIR allpass filters. IEE Proc., Vis. Image Signal Process. 150(5), 331–338 (2003)

    Article  Google Scholar 

  20. Y.C. Lim, J.H. Lee, C.K. Chen, R.H. Yang, A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design. IEEE Trans. Signal Process. 40(3), 551–558 (1992)

    Article  Google Scholar 

  21. R.A. Losada, Digital Filters with MATLAB (The MathWorks Inc., Natick, 2008)

    Google Scholar 

  22. V.M. Mladenov, N.E. Mastorakis, Design of two-dimensional recursive filters by using neural networks. IEEE Trans. Neural Netw. 12(3), 585–590 (2001)

    Article  Google Scholar 

  23. T.Q. Nguyen, T.I. Laakso, R.D. Koilpillai, Eigenfilter approach for the design of allpass filters approximating a given phase response. IEEE Trans. Signal Process. 42(9), 2257–2263 (1994)

    Article  Google Scholar 

  24. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (Prentice-Hall Inc., Englewood Cliffs, 1989)

    MATH  Google Scholar 

  25. S.C. Pei, J.J. Shyu, Eigenfilter design of 1-D and 2-D IIR digital all-pass filters. IEEE Trans. Signal Process. 42(4), 966–968 (1994)

    Article  Google Scholar 

  26. S.C. Pei, P.H. Wang, Maximally flat all-pass fractional Hilbert transformers, in Proc. IEEE Int. Symp. on Circuits and Systems, May 2003, pp. 701–704

    Google Scholar 

  27. K. Rajamani, Y.S. Lai, A novel method for designing allpass digital filters. IEEE Signal Process. Lett. 6(8), 207–209 (1999)

    Article  Google Scholar 

  28. P.A. Regalia, S.K. Mitra, P.P. Vaidyanathan, The digital all-pass filter: a versatile signal processing building block. Proc. IEEE 76(1), 19–37 (1988)

    Article  Google Scholar 

  29. D.W. Tank, J. Hopfield, Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 33(5), 533–541 (1986)

    Article  Google Scholar 

  30. C.C. Tseng, Design of IIR digital all-pass filters using least pth phase error criterion. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 50(9), 653–656 (2003)

    Article  Google Scholar 

  31. X. Zhang, T. Muguruma, T. Yoshikawa, Design of orthonormal symmetric wavelet filters using real all-pass filters. Signal Process. 80(8), 1551–1559 (2000)

    Article  Google Scholar 

  32. X. Zhang, H. Iwakura, Design of IIR digital all-pass filters based on eigenvalue problem. IEEE Trans. Signal Process. 47(2), 554–559 (1999)

    Article  Google Scholar 

  33. H. Zhao, J. Yu, A novel neural network-based approach for designing 2-D FIR filters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44(11), 1095–1099 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous reviewers for their valuable recommendations and comments, which contributed to an effective presentation of the proposed paper. The work was supported in part by the National Science Council of the Republic of China under research contracts NSC-99-2221-E-145-001 and NSC-100-2221-E-145-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Dar Jou.

Appendix

Appendix

The tangent expression of (5) is rewritten as

$$ \frac{\sin [ \rho_{d} ( \omega ) ]}{\cos [ \rho_{d} ( \omega ) ]} = \frac{\sum_{n = 1}^{N} a_{n}\sin ( n\omega )}{1 + \sum_{n = 1}^{N} a_{n}\cos ( n\omega )}. $$
(26)

Multiply both sides by \(\cos [ \rho_{d} ( \omega ) ] ( 1 + \sum_{n = 1}^{N} a_{n}\cos ( n\omega ) )\); hence,

$$ \sin \bigl[ \rho_{d} ( \omega ) \bigr] \Biggl( 1 + \sum _{n = 1}^{N} a_{n}\cos ( n\omega ) \Biggr) = \cos \bigl[ \rho_{d} ( \omega ) \bigr] \Biggl( \sum _{n = 1}^{N} a_{n}\sin ( n\omega ) \Biggr). $$
(27)

Then, (27) can be formulated as

$$ \sum_{n = 1}^{N} a_{n} \bigl\{ \sin \bigl[ \rho_{d} ( \omega ) \bigr]\cos ( n\omega ) - \cos \bigl[ \rho_{d} ( \omega ) \bigr]\sin ( n\omega ) \bigr\} = - \sin \bigl[ \rho_{d} ( \omega ) \bigr]. $$
(28)

Using the properties of the trigonometric function, (28) can be expressed in a compact form:

$$ \sum_{n = 1}^{N} a_{n}\sin \bigl[ \rho_{d} ( \omega ) - n\omega \bigr] = - \sin \bigl[ \rho_{d} ( \omega ) \bigr]. $$
(29)

This equation is analogous to the general FIR filter design problem, in which the constant amplitude response is replaced by the sinusoidal amplitude. Consequently, there exist several linear algebra-based methods that can be used to solve this optimization problem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, LC., Jou, YD., Chen, FK. et al. Neural Network-Based IIR All-Pass Filter Design. Circuits Syst Signal Process 33, 437–457 (2014). https://doi.org/10.1007/s00034-013-9641-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9641-0

Keywords

Navigation