Skip to main content
Log in

Design of Novel Testable and Diagnosable Phase-Frequency Detector

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel fully testable and diagnosable structure for phase-frequency detectors. All procedures of converting the conventional PFD to the fully testable one are reported step by step. Also, the probability-based testability of proposed architecture is calculated. In addition, area considerations related to new fully testable PFD are introduced completely. At last, the proposed structure is designed in both system level and circuit level. The results of fully testable PFD in 0.13-μm CMOS technology are shown. Simulation results confirm the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. K.S. Abdel-Hafez, L.-T. Wang, A. Kifli, F.-S. Hsu, X. Wen, M.-C. Lin, H.-P. Wang, Method and apparatus for testing asynchronous set/reset faults in a scan-based integrated circuit. U.S. Patent Application No. 20040153926, 5 August 2004

  2. M. Abramovici, M.A. Breuer, A.D. Friedman, Digital Systems Testing and Testable Design (IEEE Press, Piscataway, 1994)

    Book  Google Scholar 

  3. M. Ayat, B. Babaei, R. Ebrahimi Atani, S. Mirzakuchaki, A. Zamanidoost, Design and simulation of a CMOS DLL-based frequency multiplier, in IEEE Symposium on Industrial Electronics and Applications (ISIEA 2010), 3–5 October 2010, Penang, Malaysia (2010)

    Google Scholar 

  4. K. Baker, R.M. Croft, VLSI test strategy planning techniques and tools. Comput.-Aided Eng. J. 4(2), 83–88 (1987)

    Article  Google Scholar 

  5. J.P. Bickford, J.D. Hibbeler, D. Mueller, S. Peyer, V.S. Kumar, Optimizing product yield using manufacturing defect weights, in 23rd Annual SEMI, Advanced Semiconductor Manufacturing Conference (ASMC), 15–17 May 2012, pp. 16–20

    Google Scholar 

  6. E. Bukata, D.C. Davis, L. Shombert, The use of model-based test requirements throughout the product life cycle. IEEE Aerosp. Electron. Syst. Mag. 15(2), 39–44 (2000)

    Article  Google Scholar 

  7. C.N. Chuang, S.I. Liu, A 0.5–5 GHz wide-range multi-phase DLL with a calibrated charge pump. IEEE Trans. Circuits Syst. II, Express Briefs 54(11), 939–943 (2007)

    Article  Google Scholar 

  8. S.R. Das, Getting errors to catch themselves—self-testing of VLSI circuits with built-in hardware. IEEE Trans. Instrum. Meas. 54(3), 941–955 (2005)

    Article  Google Scholar 

  9. M. Gholami, A novel low power architecture for DLL-based frequency synthesizers. Circuits Syst. Signal Process. 32(2), 781–801 (2013). doi:10.1007/s00034-012-9488-9

    Article  MathSciNet  Google Scholar 

  10. M. Gholami, G. Ardeshir, Analysis of DLL jitter due to voltage-controlled delay line. Circuits Syst. Signal Process. 32(5), 2119–2135 (2013). doi:10.1007/s00034-013-9584-5

    Article  Google Scholar 

  11. M. Gholami, G. Ardeshir, H. Ghonoodi, A novel architecture for low voltage-low power DLL-based frequency multipliers. IEICE Electron. Express 8(11), 859–865 (2011)

    Article  Google Scholar 

  12. H. Hashempour, L. Schiano, F. Lombardi, Evaluation, analysis, and enhancement of error resilience for reliable compression of VLSI test data. IEEE Trans. Instrum. Meas. 54(5), 1761–1769 (2005)

    Article  Google Scholar 

  13. C.F. Hawkins, H.T. Nagle, R.R. Fritzemeier, J.R. Guth, The VLSI circuit test problem: a tutorial. IEEE Trans. Ind. Electron. 36(2), 111–116 (1989)

    Article  Google Scholar 

  14. M. Hirech, Test cost and test power conflicts: EDA perspective, in 28th VLSI Test Symposium (VTS), 19–22 April 2010, p. 126

    Google Scholar 

  15. W. Hu, L. Chunglen, X. Wang, Fast frequency acquisition phase frequency detector with zero blind zone in PLL. Electron. Lett. 43(19), 1018–1020 (2007)

    Article  Google Scholar 

  16. N.K. Jha, S.K. Gupta, Testing of Digital Systems (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  17. S.J. Kim, S.H. Hong, J.-K. Wee, J.H. Cho, P.S. Lee, J.H. Ahn, J.Y. Chung, A low-jitter wide-range skew-calibrated dual-loop DLL using antifuse circuitry for high-speed DRAM. IEEE J. Solid-State Circuits 37(6), 726–734 (2002)

    Article  Google Scholar 

  18. Y.-S. Kim, S.-J. Park, Y.-S. Kim, D.-B. Jang, S.-W. Jeong, H.-J. Park, J.-Y. Sim, A 40-to-800 MHz locking multi-phase DLL, in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 306–307

    Google Scholar 

  19. G. O’Donoghue, C.A. Gomez-Uribe, A statistical analysis of the number of failing chips distribution. IEEE Trans. Semicond. Manuf. 21(3), 342–351 (2008)

    Article  Google Scholar 

  20. K. Park, I.C. Park, Fast frequency acquisition phase frequency detectors with prediction-based edge blocking, in ISCAS 2009 (2009), pp. 1891–1894

    Google Scholar 

  21. A. Sasan, H. Homayoun, A.M. Eltawil, F. Kurdahi, Inquisitive defect cache: a means of combating manufacturing induced process variation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(9), 1597–1609 (2011)

    Article  Google Scholar 

  22. K. Sun, P. Ning, C. Wang, Secure and resilient clock synchronization in wireless sensor networks. IEEE J. Sel. Areas Commun. 24(2), 395–408 (2006)

    Article  Google Scholar 

  23. Y. Tao, S.Z. Ramadan, S.J. Bae, Yield prediction for integrated circuits manufacturing through hierarchical Bayesian modeling of spatial defects. IEEE Trans. Reliab. 60(4), 729–741 (2011)

    Article  Google Scholar 

  24. L.-T. Wang, C.-W. Wu, X. Wen, VLSI Test Principles and Architectures: Design for Testability (Morgan Kaufmann, San Mateo, 2006). ISBN 0123705975

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers and editors for the useful and constructive comments which have improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Gholami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gholami, M., Baleghi, Y. & Ardeshir, G. Design of Novel Testable and Diagnosable Phase-Frequency Detector. Circuits Syst Signal Process 33, 999–1018 (2014). https://doi.org/10.1007/s00034-013-9679-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9679-z

Keywords

Navigation