Skip to main content
Log in

Improved Weighted Average Prediction for Multi-Agent Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In sense of communication delays, an improved robust consensus algorithm for multi-agent networks and its the convergence rate have been investigated in this paper. Precisely, an improved weighted average prediction has been introduced to reformulate the network model into a neutral network fashion. By virtue of analyzing the Hopf bifurcation, an upper bound of the communication delay is derived for the multi-agent network, which could guarantee the network to achieve weighted average consensus. In addition, the main results show that not only can the proposed method promote the robustness but also improve its convergence rate. Finally, two numerical simulations are provided, which demonstrates the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.C. Aysal, B.N. Oreshkin, M.J. Coates, Accelerated distributed average consensus via localized node state prediction. IEEE Trans. Signal Process. 57, 1563–1576 (2009)

    Article  MathSciNet  Google Scholar 

  2. Y. Cao, W. Ren, LQR-based optimal linear consensus algorithms, in Proc. Am. Control Conf., St., Louis, USA (2009), pp. 5204–5209

    Google Scholar 

  3. Y. Cao, W. Ren, Multi-agent consensus using both current and outdated states with fixed and undirected interaction. J. Intell. Robot. Syst. 58, 95–106 (2010)

    Article  MATH  Google Scholar 

  4. A.D.G. Dimakis, A.D. Sarwate, M.J. Wainwright, Geographic gossip: efficient averaging for sensor networks. IEEE Trans. Signal Process. 56, 1205–1216 (2008)

    Article  MathSciNet  Google Scholar 

  5. H. Fang, Z. Wu, J. Wei, Improvement for consensus performance of multi-agent systems based on weighted average prediction. IEEE Trans. Autom. Control 57, 249–254 (2012)

    Article  Google Scholar 

  6. X. He, C. Li, Y. Shu, Bogdanov–Takens bifurcation in a single inertial neuron model with delay. Neurocomputing 89, 193–201 (2012)

    Article  Google Scholar 

  7. X. He, C. Li, Y. Shu, Triple-zero bifurcation in van der Pol’s oscillator with delayed Feedback. Commun. Nonlinear Sci. Numer. Simul. 17, 5229–5239 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. Kao, C. Wang, Global stability analysis for stochastic coupled reaction–diffusion systems on networks. Nonlinear Anal. B: Real World Appl. 14, 1457–1465 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Kokame, T. Mori, Stability preserving transition from derivative feedback to its difference counterparts, in Proc. 15th IFAC World Congr, Barcelona, Spain (2002), pp. 588–593

    Google Scholar 

  10. J. Lee, J.-S. Kim, H. Song, H. Shim, A constrained consensus problem using MPC. Internat. J. Control, Autom., Syst. 9, 952–957 (2011)

    Article  Google Scholar 

  11. H. Li, X. Liao, X. Lei, T. Huang, W. Zhu, Second-order consensus seeking in multi-agent systems with nonlinear dynamics over random switching directed networks. IEEE Trans. Circuits Syst. I. Regul. Pap. 60, 1595–1607 (2012)

    Article  MathSciNet  Google Scholar 

  12. C. Liu, Y. Tian, Coordination of multi-agent systems with communication delays, in Proc. IFAC World Congr, Seoul, South Korea (2008), pp. 10782–10787

    Google Scholar 

  13. Y. Lu, L. Zhang, X. Mao, Distributed information consensus filters for simultaneous input and state estimation. Circuits, Syst., Signal Process. 32, 877–888 (2013)

    Article  MathSciNet  Google Scholar 

  14. Z. Meng, Y. Cao, W. Ren, Stability and convergence analysis of multi-agent consensus with information reuse. Int. J. Control 83, 1081–1092 (2009)

    Article  MathSciNet  Google Scholar 

  15. R. Olfati-Saber, J.A. Fax, R.M. Murray, Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–233 (2007)

    Article  Google Scholar 

  16. W. Ren, Y. Cao, Distributed Cooperative of Multi-Agent Networks (Springer, London, 2011)

    Book  Google Scholar 

  17. H. Su, X. Wang, Z. Lin, Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54, 293–307 (2009)

    Article  MathSciNet  Google Scholar 

  18. H. Wang, X. Liao, T. Huang, Accelerated consensus to accurate average in multi-agent networks via state prediction. Nonlinear Dyn. 73, 551–563 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Z. Wu, H. Fang, Y. She, Weighted average prediction for improving consensus performance of second-order delayed multi-agent systems. IEEE Trans. Syst., Man, Cybern. B, Cybern. 42, 1501–1508 (2012)

    Article  Google Scholar 

  20. L. Xiao, S. Boyd, Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Yu, J. Cao, G. Chen, Stability and Hopf bifurcation of a general delayed recurrent neural network. IEEE Trans. Neural Networks 19, 845–854 (2008)

    Article  Google Scholar 

  22. W. Yu, G. Chen, M. Cao, Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46, 1089–1095 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Yuan, S. Xu, H. Zhao, Y. Chu, Accelerating distributed average consensus by exploring the information of second-order neighbors. Phys. Lett. A 374, 2438–2445 (2010)

    Article  MATH  Google Scholar 

  24. H.-T. Zhang, M.Z.Q. Chen, G.-B. Stan, Fast consensus via predictive pining control. IEEE Trans. Circuits Syst. I, Regul. Pap. 58, 2247–2258 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61170249 and Grant 61273021, in part by the Research Fund of Preferential Development Domain for the Doctoral Program of Ministry of Education of China under Grant 201101911130005, in part by the State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, under Grant 2007DA10512709207, in part by the Natural Science Foundation Project of CQ cstc2013jjB40008, and in part by the Program for Changjiang Scholars. This publication was made possible by NPRP Grant #4-1162-1-181 from the Qatar National Research Fund (a member of the Qatar Foundation).

The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiwei Wang.

Appendix: A Simple Derivation of (4)

Appendix: A Simple Derivation of (4)

In this appendix, it provides a simple derivation of the protocol (4). Since

$$\hat{x}_{j}(t-\tau+\sigma) = x_{j}(t-\tau) + \delta _1(\sigma) \dot{x}_{j}(t-\tau),$$

where δ 1(σ)=(e σ−1)(1−[tanh(σ)]2)+tanh(σ), it follows that \(\hat{x}_{j}(\theta) = x_{j}(t-\tau) + \delta_{1}(\theta-t+\tau) \dot {x}_{j}(t-\tau)\), then substituting this into (3), we have

$$\begin{aligned} &\bar{\hat{x}}_{j}(t;\tau,\sigma) \\ &\quad= \frac{\int_{t-\tau}^{t-\tau+\sigma} e^{t-\tau-\theta} \hat{x}_j(\theta) \,\mathrm{d}\theta}{\int_{t-\tau }^{t-\tau+\sigma} e^{t-\tau-\theta} \,\mathrm{d}\theta} \\ &\quad= \frac{x_{j}(t-\tau) \int_{t-\tau}^{t-\tau+\sigma} e^{t-\tau-\theta} \,\mathrm{d}\theta+ \dot{x}_{j}(t-\tau) \int_{t-\tau}^{t-\tau+\sigma} e^{t-\tau-\theta} \delta_1(\theta-t+\tau) \,\mathrm{d}\theta}{\int_{t-\tau }^{t-\tau+\sigma} e^{t-\tau-\theta} \,\mathrm{d}\theta} \\ &\quad= x_{j}(t-\tau) + \frac{\dot{x}_{j}(t-\tau)}{1 - e^{-\sigma}} \int_{t-\tau}^{t-\tau+\sigma} e^{t-\tau-\theta} \delta_1(\theta-t+\tau) \,\mathrm{d}\theta. \end{aligned}$$
(24)

Let s=θt+τ, after substituting δ 1(⋅) into (24), one obtains

$$\begin{aligned} \bar{\hat{x}}_{j}(t;\tau,\sigma) &= x_{j}(t- \tau) + \frac{\dot {x}_{j}(t-\tau)}{1 - e^{-\sigma}} \int_{0}^{\sigma} e^{-s} {\bigl[} \bigl(e^{s} - 1\bigr) \bigl(1 - \bigl[ \tanh(s)\bigr]^{2}\bigr) + \tanh(s) {\bigr]} \,\mathrm{d}s \\ &= x_{j}(t-\tau) + \frac{\dot{x}_{j}(t-\tau)}{1 - e^{-\sigma}} {\biggl[} \int _{0}^{\sigma} \bigl(1 - \bigl[\tanh(s) \bigr]^{2}\bigr) \,\mathrm{d}s \\&\quad{} - \int_{0}^{\sigma} e^{-s} \bigl(1 - \bigl[\tanh(s)\bigr]^{2}\bigr) \,\mathrm{d}s + \int_{0}^{\sigma} e^{-s} \tanh (s) \,\mathrm{d}s {\biggr]} \\ &= x_{j}(t-\tau) + \frac{\dot{x}_{j}(t-\tau)}{1 - e^{-\sigma}} {\biggl[} \tanh(\sigma) - \int _{0}^{\sigma} e^{-s} \bigl(1 - \bigl[\tanh(s) \bigr]^{2}\bigr) \mathrm {d}s \\&\quad{} + \int_{0}^{\sigma} e^{-s} \tanh(s) \,\mathrm{d}s {\biggr]} \\ &= x_{j}(t-\tau) + \frac{\dot{x}_{j}(t-\tau)}{1 - e^{-\sigma}} {\biggl[} \tanh(\sigma) \\&\quad{} - \int _{0}^{\sigma} e^{-s} \bigl(1 - \bigl[\tanh(s) \bigr]^{2}\bigr) \mathrm {d}s - e^{-\sigma} \tanh(\sigma) + \int _{0}^{\sigma} e^{-s} \mathrm {d}\tanh(s) { \biggr]} \\ &= x_{j}(t-\tau) + \frac{\dot{x}_{j}(t-\tau)}{1 - e^{-\sigma}} {\bigl[} \tanh(\sigma) - e^{-\sigma} \tanh(\sigma) {\bigr]} \\ &= x_{j}(t-\tau) + \tanh(\sigma) \dot{x}_{j}(t-\tau). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liao, X., Huang, T. et al. Improved Weighted Average Prediction for Multi-Agent Networks. Circuits Syst Signal Process 33, 1721–1736 (2014). https://doi.org/10.1007/s00034-013-9717-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9717-x

Keywords

Navigation