Skip to main content
Log in

A 50 mHz Sinh-Domain High-pass Filter for Realizing an ECG Signal Acquisition System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A Sinh-Domain high-pass filter topology with 50 mHz cutoff frequency is proposed in this paper. The realization of the required extremely large time constant is achieved through the employment of appropriate current division network, constructed from appropriate configured dividers. As an application example, an electrocardiography (ECG) signal acquisition system is realized, where 50/60 Hz bandstop (notch) and low-pass filters have also been employed. Using the Analog Design Environment of the Cadence software and MOS transistors parameters provided by the TSMC 180 nm CMOS process, the performance of all intermediate stages has been evaluated, in terms of the most important performance factors. In addition, the behavior of the proposed system has been studied through the stimulation with noisy ECGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Alzaher, N. Tasadduq, Y. Mahnashi, A highly linear fully integrated powerline filter for biopotential acquisition systems. IEEE Biomed. Circuits Syst. 7(5), 703–712 (2013). doi:10.1109/TBCAS.2013.2245506

    Article  Google Scholar 

  2. J. Bailey, A. Berson, A. Garson, L. Horan, P. Macfarlane, D. Mortara, C. Zywietz, Recommendations for standardization and specifications in automated electrocardiography: bandwidth and digital signal processing. J. Am. Heart Assoc. Circ. 81(2), 730–739 (1990). doi:10.1161/01.CIR.81.2.730

    Google Scholar 

  3. K. Bult, J. Geelen, An inherently linear and compact MOST-only current division technique. IEEE J. Solid-State Circuits. 27(12), 1730–1735 (1992). doi:10.1109/4.173099

    Article  Google Scholar 

  4. A.C. Demartinos, C. Kasimis, C. Laoudias, C. Psychalinos, Companding realizations of the non-linear energy operator. ISRN Biomed. Eng. (2013). doi:10.1155/2013/750290

  5. ECGSYN, http://physionet.org/physiotools/ecgsyn/. Accessed 15 May 2014

  6. C. Enz, E. Vittoz, CMOS low-power analog circuit design, in Proceedings of Designing Low Power Digital Systems, Emerging Technologies Conference, Atlanta, GA, USA (1996), pp. 79–133. doi:10.1109/ETLPDS.1996.508872

  7. F. Kafe, C. Psychalinos, Realization of companding filters with large time-constants for biomedical applications. Analog Integr. Circuits Signal Process. 78(1), 217–231 (2014). doi:10.1007/s10470-013-0165-0

    Article  Google Scholar 

  8. E. Kardoulaki, K. Glaros, A. Katsiamis, E. Drakakis, An 8Hz, 0.1\(\mu \)W, 110+ dBs Sinh CMOS Bessel Filter for ECG signals, in International Conference on Microelectronics (ICM), Marrakech, Morocco (2009), pp. 14–17. doi:10.1109/ICM.2009.5418668

  9. E. Kardoulaki, K. Glaros, P. Degenaar, A. Katsiamis, H. Man, D. Ip, E. Drakakis, Measured hyperbolic-sine(sinh) CMOS results: a high-order 10Hz–1kHz notch filter for 50/60Hz noise. Microelectron. J. 44(12), 1268–1277 (2013). doi:10.1016/j.mejo.2013.08.013

    Article  Google Scholar 

  10. C. Kasimis, C. Psychalinos, Design of Sinh-Domain filters using complementary operators. Int. J. Circuit Theory Appl. 40(10), 1019–1039 (2012). doi:10.1002/cta.769

    Article  Google Scholar 

  11. C. Kasimis, C. Psychalinos, 1.2V BiCMOS Sinh-Domain filters. Circuits Syst. Signal Process. 31(4), 1257–1277 (2012). doi:10.1007/s00034-011-9379-5

    Article  MathSciNet  Google Scholar 

  12. A. Katsiamis, K. Glaros, E. Drakakis, Insights and advances on the design of CMOS Sinh companding filters. IEEE Trans. Circuits Syst. I. 55(9), 2539–2550 (2008). doi:10.1109/TCSI.2008.921037

    Article  MathSciNet  Google Scholar 

  13. P. Kligfield, L. Gettes, J. Bailey, R. Childers, B. Deal, W. Hancock, G. van Herpen, J. Kors, P. Macfarlane, D. Mirvis, O. Pahlm, P. Rautaharju, G. Wagner, Recommendations for the standardization and interpretation of the electrocardiogram part I: the electrocardiogram and its technology. J. Am. Heart Assoc. Circ. 115, 1306–1324 (2007). doi:10.1161/CIRCULATIONAHA.106.180200

    Google Scholar 

  14. B. Linares-Barranco, T. Serrano-Gotarredona, On the design and characterization of femtoampere current-mode circuits. IEEE J. Solid-State Circuits 38(8), 1353–1363 (2003). doi:10.1109/JSSC.2003.814415

    Article  Google Scholar 

  15. B. Linares-Barranco, T. Serrano-Gotarredona, R. Serano-Gotarredona, C. Serrano-Gotarredona, Current mode techniques for sub-pico-ampere circuit design. Analog Integr. Circuits Signal Process. 38(2–3), 103–119 (2004). doi:10.1023/B:ALOG.0000011162.52504.39

    Article  Google Scholar 

  16. A. Lopez-Martin, A. Carlosena, Synthesis of sinh systems from Gm-C systems by component to component substitution, in Proceedings of 42nd-Midwest Symposium on Circuits and Systems (MWSCAS), Las Cruses, NM, USA (1999), pp. 287–290. doi:10.1109/MWSCAS.1999.867263

  17. C.T. Ma, P.I. Mak, M.I. Vai, P.U. Mak, S.H. Pun, W. Feng, R. Martins, Frequency-bandwidth-tunable powerline notch filter for biopotential acquisition systems. Electron. Lett. 45(4), 197–199 (2009). doi:10.1049/el:20093704

    Article  Google Scholar 

  18. Physiobank ATM, http://www.physionet.org/cgi-bin/atm/ATM. Accessed 15 May 2014

  19. X. Qian, Y. Ping Xu, X. Li, A CMOS continuous-time low-pass notch filter for EEG systems. Analog Integr. Circuits Signal Process. 44(3), 231–238 (2005). doi:10.1007/s10470-005-3007-x

    Article  Google Scholar 

  20. W. Serdijn, M. Kouwenhoven, J. Mulder, A. van Roermund, Design of high dynamic range fully integratable translinear filters. Analog Integr. Circuits Signal Process. 19(3), 223–239 (1999). doi:10.1023/A:1008378528611

    Article  Google Scholar 

  21. S. Thanapitak, C. Toumazou, A bionics chemical synapse. IEEE Trans. Biomed. Circuits Syst. 7(3), 296–306 (2013). doi:10.1109/TBCAS.2012.2202494

    Article  Google Scholar 

  22. G. Tsirimokou, C. Laoudias, C. Psychalinos, Tinnitus detector realization using Sinh-Domain circuits. J. Low Power Electron. 9(4), 458–470 (2013). doi:10.1166/jolpe.2013.1272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Psychalinos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafe, F., Khanday, F.A. & Psychalinos, C. A 50 mHz Sinh-Domain High-pass Filter for Realizing an ECG Signal Acquisition System. Circuits Syst Signal Process 33, 3673–3696 (2014). https://doi.org/10.1007/s00034-014-9826-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9826-1

Keywords

Navigation