Skip to main content
Log in

Analysis of Channel Mismatch Errors in Frequency-Interleaved ADC System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Frequency-interleaved ADC (FIADC) is less sensitive to the mismatches between channels than the time-interleaved ADC (ADC). However, channel mismatches in FIADC such as offset, gain, and timing mismatches among channel ADCs still degrade the performance of the FIADC system. This paper analyzes the channel mismatch effects in the FIADC system. Based on the analysis, we have clarified that the gain mismatch errors and timing mismatch errors result in noises with the same frequency but different phases, and only the magnitudes of noises due to the offset mismatch errors do not depend on the input frequency. The analyzed results can be used for calibration algorithms to compensate for the channel mismatch errors among the FIADC channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Asemani, J. Oksman, P. Duhamel, Subband architecture for hybrid filter bank A/D converters. IEEE J. Sel. Top. Signal Process. 2, 191–201 (2008)

    Article  Google Scholar 

  2. W.C. Black Jr, D. Hodges, Time interleaved converter arrays. IEEE J. Solid-State Circuits 15, 1022–1029 (1980)

    Article  Google Scholar 

  3. S. Boyd, L. Vanderberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  4. K.C. Dyer, D. Fu, S.H. Lewis, P.J. Hurst, An analog background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circuits 33, 1912–1919 (1998)

    Article  Google Scholar 

  5. D. Fu, K.C. Dyer, S.H. Lewis, P.J. Hurst, A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circuits 33, 1904–1911 (1998)

    Article  Google Scholar 

  6. J. Huawen, E.K.F. Lee, A digital-background calibration technique for minimizing timing-error effects in time-interleaved ADCs. IEEE Trans. Circuits Syst. II, Analog Digit Signal Process. 47, 603–613 (2000)

    Article  Google Scholar 

  7. S.M. Jamal, D. Fu, M.P. Singh, P.J. Hurst, S.H. Lewis, Calibration of sample-time error in a two-channel time-interleaved analog-to-digital converter. IEEE Trans. Circuits Syst. I, Regul. Pap. 51, 130–139 (2004)

    Article  Google Scholar 

  8. Y.C. Jenq, Perfect reconstruction of digital spectrum from nonuniformly sampled signals. IEEE Trans. Instrum. Meas. 3, 649–652 (1997)

    Article  Google Scholar 

  9. H. Johansson, P. Lowenborg, Reconstruction of nonuniform sampled bandlimited signals using digital fractional filters(2001). doi:10.1109/ISCAS.2001.921140

  10. H. Kobayashi, K. Kobayashi, Y. Takahashi, K. Enomoto, H. Kogure, Y. Onaya et al., Finite Aperture Time and Sampling Jitter Effects in Wideband Data Acquisition Systems (2000). doi:10.1109/ARFTG.2000.327443

  11. N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, K. Kobayashi, Explicit analysis of channel mismatch effects in time-interleaved ADC systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48, 261–271 (2001)

    Article  Google Scholar 

  12. C. Lelandais-Perrault, T. Petrescu, D. Poulton, P. Duhamel, J. Oksman, Wideband, bandpass, and versatile hybrid filter bank A/D conversion for software radio. IEEE Trans. Circuits Syst. I, Regul. Pap. 56, 1772–1782 (2009)

    Article  MathSciNet  Google Scholar 

  13. P. Lowenborg, H. Johansson, Quantization noise in filter bank analog-to-digital converters(2001). doi:10.1109/ISCAS.2001.921142

  14. P. Lowenborg, H. Johansson, L. Wanhammar, Analysis of gain and time-skew errors in filter bank based A/D converters(2001). doi:10.1109/MWSCAS.2001.986164

  15. S.J. Mazlouman, S. Mirabbasi, A frequency-translating hybrid architecture for wide-band analog-to-digital converters. IEEE Trans. Circuits Syst. II, Express Br. 54, 576–580 (2007)

    Article  Google Scholar 

  16. J.F. Strum, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12, 625–653 (1999)

    Article  Google Scholar 

  17. M.P. Timko, P.R. Holloway, Circuit techniques for achieving high speed-high resolution A/D conversion. IEEE J. Solid-State Circuits 15, 1040–1051 (1980)

    Article  Google Scholar 

  18. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  19. S.R. Velazquez, T.Q. Nguyen, S.R. Broadstone, J.K. Roberge, A hybrid filter bank approach to analog-to-digital conversion(1994). doi:10.1109/TFSA.1994.467350

  20. S.R. Velazquez, T.Q. Nguyen, S.R. Broadstone, Design of hybrid filter banks for analog/digital conversion. IEEE Trans. Signal Process. 46, 956–967 (1998)

    Article  Google Scholar 

  21. S.H. Zhao, S.C. Chan, Design and multiplierless realization of digital synthesis filters for hybrid-filter-bank A/D converters. IEEE Trans. Circuits Syst. I, Regul. Pap. 56, 2221–2233 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianping Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Tian, S., Wang, Z. et al. Analysis of Channel Mismatch Errors in Frequency-Interleaved ADC System. Circuits Syst Signal Process 33, 3697–3712 (2014). https://doi.org/10.1007/s00034-014-9828-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9828-z

Keywords

Navigation