Skip to main content
Log in

1 V Rectifier Based on Bulk-Driven Quasi-Floating-Gate Differential Difference Amplifiers

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents experimental results for a low-voltage (LV) low-power (LP) voltage rectifier realization, employing two differential difference amplifiers (DDA) as active elements.The proposed DDA is based on the recently presented technique named bulk-driven quasi-floating-gate that enables the circuit to work with 1 V power supply voltage, threshold-to-supply (\(V_{TH}\) /\(V_{DD})\) ratio and modulation index factor \((V_{pp.max} /V_{DD})\) equal to 70 and 90 %, respectively. The competitive features of the proposed structure compared with other state-of-the-art circuits are the capability for working under LV supply, with extended common mode voltage range and improved input transconductance. The proposed circuit was designed, simulated, and fabricated employing the Cadence platform and MOS transistors models provided by the 0.35 \(\upmu \)m CMOS AMIS process. The total chip area was 213 \(\times \) 266 \(\upmu \mathrm{{m}}^2\). The provided simulation and experimental results prove the attractive performances of the proposed rectifier topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Arnaud, C. Galup-Montoro, Fully integrated signal conditioning of an accelerometer for implantable pacemakers. Anal. Integr. Circ Sig. Process. 49, 313–321 (2006). doi:10.1007/s10470-006-9708-y

    Article  Google Scholar 

  2. A.J. Casson, E. Rodriguez-Villegas, Toward online data reduction for portable electroencephalography systems in epilepsy. IEEE Trans. Biomed. Eng. 56, 2816–2825 (2009). doi:10.1109/TBME.2009.2027607

    Article  Google Scholar 

  3. P. Corbishley, E. Rodríguez-Villegas, Breathing detection: towards a miniaturized wearable, battery-operated monitoring system. IEEE Trans. Biomed. Eng. 55, 196–204 (2008). doi:10.1109/TBME.2007.910679

  4. A. Harb, M. Sawan, A SC rectification and bin-integration circuit for nerve signal processing: experimental results, in Proceedings of the 10th IEEE International Conference on Electronics, Circuits and Systems, pp. 264–267 (2003).

  5. F. Khateb, Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low- power analog circuits design. AEU Electron. Commun. J. 68, 64–72 (2014). doi:10.1016/j.aeue.2013.08.019

    Article  Google Scholar 

  6. A. Khateb, S. Bay Abo Dabbous, S. Vlassis, A survey of non-conventional techniques for low-voltage low-power analog circuit design. Radioengineering 22(2), 415–427 (2013)

    Google Scholar 

  7. F. Khateb, W. Jaikla, M. Kumngem, P. Prommee, Comparative study of sub-volt differential difference current conveyors. Microelectron. J. 44, 1278–1284 (2013). doi:10.1016/j.mejo.2013.08.015

    Article  Google Scholar 

  8. F. Khateb, N. Khatib, Connection of FG MOS and QFG MOS transistors for analogous integrated circuits, National utility model registered by industrial property office in Czech Republic under registration number 23091, for year 2011. http://isdv.upv.cz/portal/pls/portal/portlets.pts.det?xprim=1693188&lan=en. Accessed 28 Dec 2011

  9. F. Khateb, N. Khatib, Connection of FG MOS and QFG MOS transistors for analogous integrated circuits, National patent application registered by the Industrial Property Office in the Czech Republic under registration number 303698, for year 2013. http://spisy.upv.cz/Patents/FullDocuments/303/303698.pdf. Accessed 20 Mar 2013

  10. F. Khateb, N. Khatib, P. Prommee, W. Jaikla, L. Fujcik, Ultra-low voltage tunable transconductor based on bulk-driven quasi-floating-gate technique, Circuits Syst. Comput. J. 22, 1350073–1/13 (2013). doi:10.1142/S0218126613500734.

  11. F. Khateb, M. Kumngern, S. Vlassis, C. Psychalinos, T. Kulej, Sub-volt fully balanced differential difference amplifier. Circuits Syst. Comput. J., 1550005–1/18 (2014). doi:10.1142/S021812661550005X.

  12. F. Khateb, J. Vávra, D. Biolek, A novel current-mode full-wave rectifier based on one CDTA and two diodes. Radioeng. J. 19, 437–445 (2010)

    Google Scholar 

  13. F. Khateb, S. Vlassis, Low-voltage bulk-driven rectifier for biomedical applications. Microelectron. J. 44, 642–648 (2013). doi:10.1016/j.mejo.2013.04.009

    Article  Google Scholar 

  14. T. Lu, M. Baker, C. Salthouse, J. J. Sit, S. Zhak, R. Sarpeshkar, A micropower analog VLSI processing channel for bionic ears and speech recognition front-ends, in Proceedings of the IEEE International Symposium Circuits and Systems, pp. 41–44 (2003)

  15. J.M.A. Miguel, A.J. Lopez-Martin, L. Acosta, J. Ramirez-Angulo, R.G. Carvajal, Using floating gate and quasi-floating gate techniques for rail-to-rail tunable CMOS transconductor design. IEEE Trans. Circuits Syst. 58, 1604–1614 (2011). doi:10.1109/TCSI.2011.2157782

    Article  MathSciNet  Google Scholar 

  16. N. Raj, A.K. Singh, A.K. Gupta, Low-voltage bulk-driven self-biased cascode current mirror with bandwidth enhancement. Electron. Lett. 50, 23–25 (2014). doi:10.1049/el.2013.3600

    Article  Google Scholar 

  17. J. Ramirez-Angulo, A.J. Lopez-Martin, R.G. Carvajal, F.M. Chavero, Very low-voltage analog signal processing based on Quasi-floating gate transistors. IEEE J. Solid-State Circuits 39, 434–442 (2004). doi:10.1109/JSSC.2003.822782

    Article  Google Scholar 

  18. B. Rumberg, D.W. Graham, A low-power magnitude detector for analysis of transient-rich signals. IEEE J. Solid-State Circuits 47, 676–685 (2012). doi:10.1109/JSSC.2011.2179452

    Article  Google Scholar 

  19. S.M. Zhak, M. Baker, R. Sarpeshkar, A low-power wide dynamic range envelope detector. IEEE J. Solid-State Circuits 38, 1750–1753 (2003). doi:10.1109/JSSC.2003.817599

    Article  Google Scholar 

Download references

Acknowledgments

The described research was performed in laboratories supported by the SIX project; the registration number CZ.1.05/2.1.00/03.0072, the operational program Research and Development for Innovation and has been supported by Czech Science Foundation Project Nos.: P102-15-21942S and P102-14-07724S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Khateb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khateb, F., Vlassis, S., Kumngern, M. et al. 1 V Rectifier Based on Bulk-Driven Quasi-Floating-Gate Differential Difference Amplifiers. Circuits Syst Signal Process 34, 2077–2089 (2015). https://doi.org/10.1007/s00034-014-9958-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9958-3

Keywords

Navigation