Skip to main content
Log in

Compressive Sensing Measurement Matrix Generator Based on Improved SC-Array LDPC Code

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We construct and implement a compressive sensing measurement matrix based on improved size-compatible (ISC)-array low-density parity-check (LDPC) code. First, we propose an improved measurement matrix from the array LDPC code matrix. The proposed measurement matrix retains suitable quasi-cyclic structures and supports arbitrary code lengths. It also achieves a high perfect recovery percentage compared with a Gaussian random matrix of the same size. Second, we propose a hardware scheme using cycle shift registers to design the compressive sensing measurement matrix generator. This provides simple circuit architecture during the generation of the measurement matrix. According to simulation verifications, the measurement matrix construction method is effective and entails fewer shift registers and a lower area overhead by using a simplified hardware implementation scheme. The compressive sensing measurement matrix generator can generate all of the required elements in the ISC-array LDPC code matrix with an acceptable hardware overhead. Therefore, it can be widely applied to large-scale sparse signal compressive sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Abematsu, T. Ohtsuki, S. P. W. Jarot, T. Kashima, Size compatible (SC)-array LDPC codes, in 66th IEEE conference on vehicular technology, pp. 1147–1151. 30 Sept 2007–3 Oct 2007

  2. A. Amini, F. Marvasti, Deterministic construction of binary, bipolar, and ternary compressed sensing matrices. IEEE Trans. Inf. Theory 57(4), 2360–2370 (2011)

    Article  MathSciNet  Google Scholar 

  3. W. Bajwa, J. Haupt, G. Raz, S. Wright, R. Nowak, Toeplitz-structured compressed sensing matrices, IEEE Workshop on Statistical Signal Processing, Madison, Wisconsin pp. 294–298, (Aug. 2007)

  4. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Chen, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid-State Circuits 47(3), 744–756 (2012)

    Article  Google Scholar 

  6. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Katic, Column-separated compressive sampling scheme for low power CMOS image sensors, 2013 IEEE 11th international new circuits and systems conference (NEWCAS), pp. 1–4, 16–19 (June 2013)

  8. X. J. Liu, S. T. Xia, Constructions of Quasi-cyclic measurement matrices based on array codes, IEEE international symposium on information theory, pp. 479–483, 7–12 (July 2013)

  9. S. Li, F. Gao, G. Ge, S. Zhang, Deterministic construction of compressed sensing matrices via algebraic curves. IEEE Trans. Inf. Theory 58(8), 5035–5041 (2012)

    Article  MathSciNet  Google Scholar 

  10. J. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Yang, T. Helleseth, On the minimum distance of array codes as LDPC codes. IEEE Trans. Inf. Theory 49(12), 3268–3271 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Yuan, K. Guo, X. Sun, J. Mei, H. Song, A power efficient BIST TPG method on don’t care bit based 2-D adjusting and hamming distance based 2-D reordering. J. Electron. Test. Theory Appl. 31(1), 43–52 (2015)

    Article  Google Scholar 

  13. H. Yuan, J. Mei, H. Song, K. Guo, Test data compression for system-on-a-chip using count compatible pattern run-length coding. J. Electron. Test. Theory Appl. 30(2), 237–242 (2014)

    Article  Google Scholar 

  14. H. Yuan, J. Mei, X. Sun, K.T. Cheng, K. Guo, A power efficient test data compression method on count compatible PRL coding. J. Circuits Syst. Comput. 24(6), 1–17 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiying Yuan.

Additional information

This research work was supported by the National Natural Science Foundation of China (61001049, 61372149 and 61370189) and Scholarship sponsored by China Scholarship Council [2013] 3018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Song, H., Sun, X. et al. Compressive Sensing Measurement Matrix Generator Based on Improved SC-Array LDPC Code. Circuits Syst Signal Process 35, 977–992 (2016). https://doi.org/10.1007/s00034-015-0100-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0100-y

Keywords

Navigation