Skip to main content
Log in

Quantized Feedback Adaptive Reliable \(H_{\infty }\) Control for Linear Time-Varying Delayed Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Based on an improved \(H_\infty \) performance index, the method of designing a reliable adaptive \(H_\infty \) controller with quantized state is addressed for the time-varying delayed system in this paper. On the basis of online estimates of actuator faults, the controller parameters are updated automatically to compensate the influence of actuator faults on the system while the desired improved \(H_\infty \) performance is preserved. A Lyapunov function candidate is constructed to prove that the closed-loop system is asymptotically stable. And the existing sufficient conditions of the controller are proved to be less conservative. The gains of the controller and the parameters of the adaptive law are co-designed and obtained in terms of solutions to a set of linear matrix inequalities. Finally, two numerical examples are given to illustrate that the proposed method is more effective than the previous methods for time-varying delayed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.D. Boskovic, R.K. Mehra, A decentralized fault-tolerant control system for accommodation of failures in higher-order flight control system. IEEE Trans. Control Syst. Technol. 18, 1103–1115 (2010)

    Article  Google Scholar 

  2. J. Feng, K.Z. Han, Robust full- and reduced-order energy-to-peak filtering for discrete-time uncertain linear systems. Signal Process. 108, 183–194 (2015)

    Article  Google Scholar 

  3. J. Feng, S.Q. Wang, Reliable fuzzy control for a class of nonlinear networked control systems with time delay. Acta Autom. Sinica 38(1099), 1091 (2012)

    MATH  Google Scholar 

  4. O.S. Fernando, Further improvement in stability criteria for linear systems with interval time-varying delay. IET Control Theory Appl. 7(3), 440–446 (2013)

    Article  MathSciNet  Google Scholar 

  5. M.Y. Fu, L.H. Xie, The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    Article  MathSciNet  Google Scholar 

  6. H. Gao, T. Chen, J. Lam, A new delay system approach to network based control. Automatica 44(1), 39–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. K.Q. Gu, V.L. Kharitonov, J. Chen, Stability of Time-delay Systems. Birkhäuser (2003)

  8. H.M. Jia, Z.R. Xiang, R.H. Karimi, Robust reliable passive control of uncertain stochastic switched time-delay systems. Appl. Math. Comput. 231, 254–267 (2014)

  9. P.E. Kalman, Nonlinear Aspects of Sampled-Date Control Systems, in Proceedings Symposium on Nonlinear Circuit Theory (Brooklyn, N.Y., VII, 1956)

  10. N. Li, J. Feng, The design of reliable adaptive controllers for time-varying delayed systems based on improved \(H_\infty \) performance indexes. J. Frankl. Inst. 352(3), 930–951 (2015)

    Article  MATH  Google Scholar 

  11. X.W. Li, H.J. Gao, A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis. IEEE Trans. Autom. Control 56(9), 2172–2178 (2011)

    Article  Google Scholar 

  12. X.W. Li, H.J. Gao, X.H. Yu, A unified approach to the stability of generalized static neural networks with linear fractional uncertainties and delays. IEEE Trans. Syst. Man Cybern. B Cybern. 41(5), 1275–1286 (2011)

    Article  MathSciNet  Google Scholar 

  13. D. Liberzon, J.P. Hespanha, Stabilization of nonlinear systems with limited information feedback. IEEE Trans. Autom. Control 50(6), 910–915 (2010)

    Article  MathSciNet  Google Scholar 

  14. Q. Ling, M.D. Lemmon, Stability of quantized control systems under dynamic bit assignment. IEEE Trans. Autom. Control 50(5), 734–740 (2005)

    Article  MathSciNet  Google Scholar 

  15. C. Liu, Z. Xiang, Robust \(L_\infty \) reliable control impulsive switched nonlinear systems with state delay. Appl. Math. Comput 42, 139–157 (2013)

    MathSciNet  MATH  Google Scholar 

  16. L. Liu, Z.S. Wang, H.G. Zhang, Adaptive NN fault-tolerant control for discrete-time systems in triangular forms with actuator fault. Neurocomputing 152(25), 209–221 (2015)

    Article  Google Scholar 

  17. G.N. Nair, R.J. Evans, Exponential stabilisablity of finite dimensional linear systems with limited date rates. Automatica 39(4), 585–593 (2003)

  18. A. Sahai, S. Mitter, The Necessity and sufficiency of anytime capacity for control over a noisy communication link, 2004, in 43rd IEEE Conference on Decicsion and Control, p. 1896–1901 (2004)

  19. W. Wang, C.Y. Wen, Adaptive actuator failures compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46, 2082–2091 (2010)

  20. W. Wang, C.Y. Wen, Adaptive compensation for infinite number of actuator failures or faults. Automatica 47, 2197–2210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. L.B. Wu, G.H. Yang, D. Ye, Robust adaptive fault-tolerant control for linear systems with actuator failures and mismatched parameter uncertainties. IET Control Theory Appl. 8(6), 441–449 (2014)

    Article  MathSciNet  Google Scholar 

  22. Y.Y. Xu, S.C. Tong, Y.M. Li, Prescribed performance fuzzy adaptive fault-tolerant control of non-linear systems with actuator faults. IET Control Theory Appl. 8(6), 420–431 (2014)

    Article  MathSciNet  Google Scholar 

  23. G.H. Yang, D. Ye, Reliable \(H_\infty \) control of linear systems with adaptive mechanism. IEEE Trans. Autom. Control 55(1), 242–247 (2010)

    Article  MathSciNet  Google Scholar 

  24. D. Ye, G.H. Yang, Adaptive reliable \(H_\infty \) control for linear time-delay systems via memory state feedback. IET Control Theory Appl 1(3), 713–721 (2007)

    Article  MathSciNet  Google Scholar 

  25. D. Ye, G.H. Yang, Delay-dependent adaptive reliable \(H_\infty \) control of linear time-varying delay systems. Int. J. Robust Nonlinear Control 19, 462–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. H.G. Zhang, Z.W. Liu, G.B. Huang, Z.S. Wang, Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay. IEEE Trans. Neural Netw. 21(1), 91–106 (2010)

    Article  Google Scholar 

  27. H.G. Zhang, FSh Yang, X.D. Liu, Q.L. Zhang, Stability analysis for neural networks with time-varying delay based on quadratic convex combination. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 513–521 (2013)

    Article  Google Scholar 

  28. Q. Zhao, J. Jiang, Reliable state feedback control systems design against actuator failures. Automatica 34(10), 1267–1272 (1998)

    Article  MATH  Google Scholar 

  29. L.L. Zhou, G.P. Lu, Quantized Feedback stabilization for network control systems with nonlinear perturbance. Int. J. Innov. Comput. Inf. 6(6), 2485–2495 (2010)

    Google Scholar 

  30. X.L. Zhu, G.H. Yang, New \(H_\infty \) Controller design method for networked control systems with quantized state feedback, in Proceeding of American Control Conference, Hyatt Regency Riverfront (St. Louis, Mo, USA 2009), pp. 5103–5108

  31. Z. Zuo, D.W.C. Ho, Y. Wang, Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation. Automatica 46, 569–576 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Feng.

Additional information

This work was supported by the National Natural Science Foundation of China (61273164, 61433004), the Fundamental Research Funds for the Central Universities (N130104001), the Liaoning Province Natural Science Foundation of China (2013020042).

Appendix

Appendix

1.1 Appendix 1: The proof of Theorem 1

Proof

Consider the Lyapunov function candidate,

$$\begin{aligned} V(t)= & {} x^\mathrm{{T}} (t)Px(t) + \int _{t - \tau (t)}^t {x^\mathrm{{T}} (s)R_1 x(s)\mathrm{{d}}s} + \int _{t - h}^t {x^\mathrm{{T}} (s)R_2 x(s)\mathrm{{d}}s}\\&\,+\frac{h}{{2\lambda _{\mathrm{{max}}} (Q)}}\int _{ - h}^0 {\int _{t + \theta }^t {\dot{x}^\mathrm{{T}} (s)Q\dot{x}(s)\mathrm{{d}}s\mathrm{{d}}\theta } } + \sum \limits _{i = 1}^m {\frac{{\tilde{\rho }_i^2 (t)}}{{l_i }}}, \end{aligned}$$

where positive matrices \(P, R_1, R_2\) and Q are to be determined, and \(l_i>0\) is a given constant.

According to Lemma 1 [30], in the case of system failure, the derivative of V(t) along the system (10) is described as follows,

$$\begin{aligned}&\dot{V}(t) + z^\mathrm{{T}} (t)z(t) - \gamma _f^2 w^\mathrm{{T}} (t)w(t) - h^2 w^\mathrm{{T}} (t)B_2^\mathrm{{T}} B_2 w(t)\\&\quad \le \dot{V}(t) + z^\mathrm{{T}} (t)z(t) - \gamma _f^2 w^\mathrm{{T}} (t)w(t) - h^2 w^\mathrm{{T}} (t)B_2^\mathrm{{T}} B_2 w(t)\\&\qquad -2[f(x(t))-\triangle _{\sigma 0}x(t)]^\mathrm {T}S[f(x(t))-\triangle _{\sigma 1}x(t)]\\&\quad \le \eta _1^{\mathrm {T}} (t)\varOmega \eta _1 (t)-\frac{h}{2\lambda _\mathrm{{max}} (Q)}\int _{t-h}^t {\dot{x}^{\mathrm {T}}(s)Q\dot{x}(s)\text{ d }s}+\sum \limits _{i=1}^m {\frac{2\tilde{\rho }_i (t)\dot{\tilde{\rho }}_i (t)}{l_i}}\\&\qquad +2\{x^\mathrm {T}(t)P[B_1K_a(\widetilde{\rho }(t))+B_1\widetilde{\rho }(t)K_b(\hat{\rho }(t))]f(x(t))\}\\&\qquad +2\{x^\mathrm {T}(t)P[B_1M_a(\widetilde{\rho }(t))+B_1\widetilde{\rho }(t)M_b(\hat{\rho }(t))]f(x(t-\tau (t)))\}\\&\qquad +z^\mathrm {T}(t)z(t)-\gamma _f^2 w^{\mathrm {T}}(t)w(t)-h^2w^{\mathrm {T}}(t)B_2^{\mathrm {T}} B_2 w(t), \end{aligned}$$

where

$$\begin{aligned} \eta _1^{\mathrm {T}} (t)= & {} [{\begin{array}{cccccc} {x^{\mathrm {T}}(t)} &{} {x^{\mathrm {T}}(t-\tau (t))} &{} {x^{\mathrm {T}}(t-h)} &{} {f^{\mathrm {T}}(x(t))} &{} {f^{\mathrm {T}}(x(t-\tau (t)))} &{}{w^{\mathrm {T}}(t)} \\ \end{array} }],\\ \varOmega= & {} \left[ {\begin{array}{cccccc} {\varOmega _{11} } &{} {\varOmega _{12} } &{} 0 &{} {\varOmega _{14}} &{} {\varOmega _{15}} &{} {\varOmega _{16}}\\ \mathrm{{*}} &{} {\varOmega _{22} } &{} 0 &{} {\varOmega _{24} } &{} {\varOmega _{25}} &{} {\varOmega _{26}}\\ \mathrm{{*}} &{} \mathrm{{*}} &{} { - R_2 } &{} 0 &{} 0 &{} 0\\ \mathrm{{*}} &{} \mathrm{{*}} &{} \mathrm{{*}} &{} {\varOmega _{44}} &{} {\varOmega _{45}} &{} {\varOmega _{46}}\\ \mathrm{{*}} &{} \mathrm{{*}} &{} \mathrm{{*}} &{} \mathrm{{*}} &{} {\varOmega _{55}} &{} {\varOmega _{56}}\\ \mathrm{{*}} &{} \mathrm{{*}} &{} \mathrm{{*}} &{} \mathrm{{*}} &{} \mathrm{{*}} &{} \Omega _{66} \\ \end{array}} \right] \\ \varOmega _{11}= & {} A_1 ^{\mathrm {T}}P+PA_1 +R_1 +R_2 +\frac{1}{2}h^2A_1^{\mathrm {T}}A_1-2\triangle _{\sigma 0}^\mathrm {T}S\triangle _{\sigma 1},\\ \varOmega _{12}= & {} PA_2\!+\!\frac{1}{2}h^2A_1^{\mathrm {T}}A_2 ,~ \varOmega _{14} =PM_1\!+\!\triangle _{\sigma 0}^\mathrm {T}S\!+\!\triangle _{\sigma 1}^\mathrm {T}S\!+\!\frac{1}{2}h^2A_1^{\mathrm {T}}B_1(I\!-\!\rho )K(\hat{\rho }(t)) ,\\ \varOmega _{15}= & {} PM_2+\frac{1}{2}h^2A_1^{\mathrm {T}}B_1(I-\rho )M(\hat{\rho }(t)),~ \varOmega _{16} \mathrm{{ = }}PB_2 + \frac{1}{2}h^2 A_1^\mathrm {T} B_2,\\ \varOmega _{22}= & {} -(1-h_1 )R_1+\frac{1}{2}h^2A_2^{\mathrm {T}}A_2-2\triangle _{\sigma 0}^\mathrm {T}S\triangle _{\sigma 1},\\ \varOmega _{24}= & {} \frac{1}{2}h^2A_2^{\mathrm {T}}B_1(I\!-\!\rho )K(\hat{\rho }(t)) , ~ \varOmega _{25} \!=\!\triangle _{\sigma 0}^\mathrm {T}S\!+\!\triangle _{\sigma 1}^\mathrm {T}S\!+\!\frac{1}{2}h^2A_2^{\mathrm {T}}B_1(I\!-\!\rho )M(\hat{\rho }(t)) , \\ \varOmega _{26}= & {} \frac{1}{2}h^2 A_2^\mathrm {T} B_2,~ \varOmega _{44} =-2S+\frac{1}{2}h^2[B_1(I-\rho )K(\hat{\rho }(t))]^{\mathrm {T}}B_1(I-\rho )K(\hat{\rho }(t)) , \\ \varOmega _{45}= & {} \frac{1}{2}h^2[B_1(I-\rho )K(\hat{\rho }(t))]^{\mathrm {T}}B_1(I-\rho )M(\hat{\rho }(t)) , \\ \varOmega _{46}= & {} \frac{1}{2}h^2[B_1(I-\rho )K(\hat{\rho }(t))]^{\mathrm {T}}B_2 , \\ \varOmega _{55}= & {} -2S+\frac{1}{2}h^2[B_1(I-\rho )M(\hat{\rho }(t))]^{\mathrm {T}}B_1(I-\rho )M(\hat{\rho }(t)) , \\ \varOmega _{56}= & {} \frac{1}{2}h^2[B_1(I-\rho )M(\hat{\rho }(t))]^{\mathrm {T}}B_2 ,~ \varOmega _{66}\,\mathrm{{=}}\,\frac{1}{2}h^2 B_2^\mathrm {T} B_2. \end{aligned}$$

Because

$$\begin{aligned} 2x^\mathrm {T}(t)PB_2w(t) \le \gamma _f^2 w^\mathrm {T}(t)w(t)+\frac{1}{\gamma _f^2 }x ^\mathrm {T}(t)PB_2B_2^\mathrm {T}Px(t) , \end{aligned}$$

and

$$\begin{aligned}&\frac{1}{2}h^2[\eta ^{\mathrm {T}}_2(t)\Delta ^\mathrm {T}B_2w(t)] \le \frac{1}{2}h^2w^\mathrm {T}(t)B_2B_2^\mathrm {T}w(t)\\&\quad \,+\frac{1}{2}h^2\eta _2^\mathrm {T}(t)\Delta ^\mathrm {T}\Delta \eta _2(t), \end{aligned}$$

where \([\eta ^{\mathrm {T}}_2(t)=[{\begin{array}{*{20}c} {x^{\mathrm {T}}(t)}&{x^{\mathrm {T}}(t-\tau (t))}&{f^\mathrm {T}(x(t))}&{f^\mathrm {T}(x(t-\tau (t)))} \end{array} }], ]\) \([\Delta =[ \displaystyle {A_1} \displaystyle {A_2} \displaystyle {B_1 (I-\rho )K(\hat{\rho }(t))} \displaystyle {B_1 (I-\rho )M(\hat{\rho }(t))}], ]\) then

$$\begin{aligned}&\dot{V}(t)+z^{\mathrm {T}}(t)z(t)-\gamma _f^2 w^{\mathrm {T}}(t)w(t)-h^2w^{\mathrm {T}}(t)B_2^{\mathrm {T}} B_2 w(t) \nonumber \\&\quad \le \eta ^{\mathrm {T}} (t)\varXi _1 \eta (t)-\frac{h}{2\lambda _\mathrm{{max}} (Q)}\int _{t-h}^t {\dot{x}^\mathrm{{T}}(s)Q\dot{x}(s)\text{ d }s}+\sum \limits _{i=1}^m {\frac{2\tilde{\rho }_i (t)\dot{\tilde{\rho }}_i (t)}{l_i}}\nonumber \\&\qquad +2\{x^\mathrm {T}(t)P[B_1K_a(\widetilde{\rho }(t))+B_1\widetilde{\rho }(t)K_b(\hat{\rho }(t))]f(x(t))\}\nonumber \\&\qquad +2\{x^\mathrm {T}(t)P[B_1M_a(\widetilde{\rho }(t))+B_1\widetilde{\rho }(t)M_b(\hat{\rho }(t))]f(x(t-\tau (t)))\}, \end{aligned}$$
(37)

where

$$\begin{aligned} \eta ^{\mathrm {T}}(t)=[{\begin{array}{ccccc} {x^{\mathrm {T}}(t)} &{} {x^{\mathrm {T}}(t-\tau (t))} &{} {x^{\mathrm {T}}(t-h)} &{} {f^\mathrm {T}(x(t))} &{} {f^\mathrm {T}(x(t-\tau (t)))}\\ \end{array} }]. \end{aligned}$$

According to Lemma 1 [7] and Lemma 2 [26], assuming \(\displaystyle {0<\frac{\tau (t)}{h-\tau (t)}<1}\), we have

$$\begin{aligned}&h\int _{t-h}^t {\dot{x}^{\mathrm {T}}(s)Q\dot{x}(s)\text{ d }s}\\&\quad = h\int _{t-\tau (t)}^t {\dot{x}^{\mathrm {T}}(s)Q\dot{x}(s)\text{ d }s} +h\int _{t-h}^{t-\tau (t)} {\dot{x}^{\mathrm {T}}(s)Q\dot{x}(s)\text{ d }s} \\&\quad \ge \eta ^{\mathrm {T}} (t)\varXi _2 \eta (t)+\eta ^{\mathrm {T}} (t)\varXi _3 \eta (t)+\frac{\tau (t)}{h-\tau (t)}\eta ^{\mathrm {T}} (t)\varXi _2 \eta (t)\\&\qquad \,+\left( 1-\frac{\tau (t)}{h-\tau (t)}\right) \eta ^{\mathrm {T}} (t)\varXi _3 \eta (t). \end{aligned}$$

So (37) can be rewritten as

$$\begin{aligned}&\dot{V}(t) + z^\mathrm{{T}} (t)z(t) - \gamma _f^2 w^\mathrm{{T}} (t)w(t) - h^2 w^\mathrm{{T}} (t)B_2^\mathrm{{T}} B_2 w(t) \nonumber \\&\quad \le \eta ^\mathrm{{T}} (t)\varXi _1 \eta (t) + \sum \limits _{i = 1}^m {\frac{{2\tilde{\rho }_i (t)\dot{\tilde{ \rho }}_i (t)}}{{l_i }}}\nonumber \\&\qquad - \frac{1}{{2\lambda _\mathrm{{max}} (Q)}}[\eta ^{\mathrm {T}} (t)\varXi _2 \eta (t)+\eta ^{\mathrm {T}} (t)\varXi _3 \eta (t)\nonumber \\&\qquad +\,\frac{\tau (t)}{h-\tau (t)}\eta ^{\mathrm {T}} (t)\varXi _2 \eta (t)+\left( 1-\frac{\tau (t)}{h-\tau (t)}\right) \eta ^{\mathrm {T}} (t)\varXi _3 \eta (t)]\nonumber \\&\qquad +\,2\{x^\mathrm {T}(t)P[B_1K_a(\widetilde{\rho }(t))+B_1\widetilde{\rho }(t)K_b(\hat{\rho }(t))]f(x(t))\}\nonumber \\&\qquad +\,2\{x^\mathrm {T}(t)P[B_1M_a(\widetilde{\rho }(t))+B_1\widetilde{\rho }(t)M_b(\hat{\rho }(t))]f(x(t-\tau (t)))\}. \end{aligned}$$
(38)

According to the adaptive law (15), it is easy to know

$$\begin{aligned} 2\sum \limits _{i=1}^m {\tilde{\rho }_i (t)M_{3i} } +\sum \limits _{i=1}^m {\frac{2\tilde{\rho }_i (t)\dot{\tilde{\rho }}_i (t)}{l_i }} \le 0, \end{aligned}$$
(39)

it is equivalent to

$$\begin{aligned}&\sum \limits _{i = 1}^m {\frac{{2\tilde{\rho }_i (t)\dot{\tilde{ \rho }}_i (t)}}{{l_i }}} +2\{x^\mathrm {T}(t)P[B_1K_a(\widetilde{\rho }(t))+B_1\widetilde{\rho }(t)K_b(\hat{\rho }(t))]f(x(t))\}\\&\quad \,+2\{x^\mathrm {T}(t)P[B_1M_a(\widetilde{\rho }(t))+B_1\widetilde{\rho }(t)M_b(\hat{\rho }(t))]f(x(t-\tau (t)))\} \le 0. \end{aligned}$$

Substituting (39) into (38), it follows

$$\begin{aligned}&\dot{V}(t)+z^{\mathrm {T}}(t)z(t)-\gamma _f ^2w^{\mathrm {T}}(t)w(t)-h^2w^{\mathrm {T}}(t)B_2^{\mathrm {T}} B_2 w(t) \\&\quad \le \eta ^{\mathrm {T}}(t)\varXi _1 \eta (t)-\frac{1}{2\lambda _{\text{ max }} (Q)}[\eta ^{\mathrm {T}} (t)\varXi _2 \eta (t)+\eta ^{\mathrm {T}} (t)\varXi _3 \eta (t)\\&\qquad +\frac{\tau (t)}{h-\tau (t)}\eta ^{\mathrm {T}} (t)\varXi _2 \eta (t)+\left( 1-\frac{\tau (t)}{h-\tau (t)}\right) \eta ^{\mathrm {T}} (t)\varXi _3 \eta (t)]. \end{aligned}$$

According to Lemma 2 [26], (18) and (19) hold imply that (40) holds,

$$\begin{aligned}&\left( \varXi _1 -\frac{1}{2\lambda _{\text{ max }} (Q)}\varXi _2-\frac{1}{2\lambda _{\text{ max }} (Q)}\varXi _3 \right) \nonumber \\&\quad \,-\frac{1}{2\lambda _{\text{ max }} (Q)}\left[ (1-\frac{\tau (t)}{h-\tau (t)})\varXi _2 +\frac{\tau (t)}{h-\tau (t)}\varXi _3\right] <0. \end{aligned}$$
(40)

From the above, for any nonzero vector \(x\in R^n\), we have

$$\begin{aligned} \dot{V}(t)+z^{\mathrm {T}}(t)z(t)-\gamma _f^2 w^{\mathrm {T}}(t)w(t)-h^2w^{\mathrm {T}}(t)B_2^{\mathrm {T}} B_2 w(t)<0, \end{aligned}$$
(41)

which implies that \(\dot{V}(t)<0\), when \(w(t)=0\). So the states of the system (10) are asymptotically stable in the actuator fault case.

Integrate (41) from 0 to \(\infty \) on both sides,

$$\begin{aligned}&V(\infty )-V(0)+\int _0^\infty {z^{\mathrm {T}}(t)z(t)\text{ d }t}\\&\quad \le \gamma _f^2 \int _0^\infty {w^{\mathrm {T}}(t)w(t)\text{ d }t} +h^2\int _0^\infty {w^{\mathrm {T}}(t)B_2^{\mathrm {T}} B_2 w(t)\text{ d }t} , \end{aligned}$$

which implies that (14) holds. The proof of the system (10) in the normal case is similar, so it is omitted here. \(\square \)

1.2 Appendix 2: The proof of Theorem 2

Proof

Let \(P^{-1}=X, P^{-1}R_1 P^{-1} =E_1, P^{-1}R_2 P^{-1} = E_2, P^{-1}SP^{-1} =F_1, \mu P^{-1}QP^{-1} =F_2, K_0 P^{-1}=Y_0 , K_{ai} P^{-1} =Y_{ai}, K_{bi} P^{-1} =Y_{bi}, M_0 P^{-1} =N_0, M_{ai} P^{-1} =N_{ai}, M_{bi} P^{-1} =N_{bi}, i=1,\ldots ,m\).

Pre- and post-multiplying \(\mathrm {diag}\{P^{-1},P^{-1},P^{-1},P^{-1},P^{-1}\}\) for (18), for any \(\rho \in \{{\begin{array}{ccc} {\rho ^1} &{} \cdots &{} {\rho ^L} \\ \end{array} }\}\),

$$\begin{aligned}&\varPsi _{11} +\sum \limits _{i=1}^m {\hat{\rho }_iZ _i^1} +\left( \sum \limits _{i=1}^m {\hat{\rho }_iZ _i^1}\right) ^\mathrm {T}+\sum \limits _{i=1}^m{\sum \limits _{j=1}^m {\hat{\rho }_i\hat{\rho }_jZ _{ij}}}\nonumber \\&\quad \,+\left( U_0+\sum \limits _{i=1}^m{\hat{\rho }_iU_i}\right) ^\mathrm {T}\left( U_0+\sum \limits _{i=1}^m{\hat{\rho }_iU_i}\right) <0, \end{aligned}$$
(42)

According to Lemma 1 in literature [23], if the conditions (22) and (25) hold for any \(\rho \in \{{\begin{array}{ccc} {\rho ^1} &{} \cdots &{} {\rho ^L} \\ \end{array} }\}\), then (42) holds. The proof of other inequalities is similar, so these are omitted here. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Feng, J. Quantized Feedback Adaptive Reliable \(H_{\infty }\) Control for Linear Time-Varying Delayed Systems. Circuits Syst Signal Process 35, 851–874 (2016). https://doi.org/10.1007/s00034-015-0109-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0109-2

Keywords

Navigation