Skip to main content
Log in

On Complete and Strong Controllability for Rectangular Descriptor Systems

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Algebraic criteria have been developed to check the complete and strong controllability for rectangular descriptor systems. Under the assumption of controllability at infinity, the complete controllability for a descriptor system has been proved to be equivalent to the controllability for a normal system. The essence of the technique to design the proposed normal system is based on the row and column compression operations of basic matrix theory. The strong controllability concept for a descriptor system is related with the complete controllability concept for another descriptor system. Examples are provided to illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R.A. Adams, J.J. Fournier, Sobolev Spaces, vol. 140 (Academic Press, London, 2003)

    MATH  Google Scholar 

  2. A. Banaszuk, M. Kociecki, F. Lewis, Kalman decomposition for implicit linear systems. IEEE Trans. Autom. Control 37(10), 1509–1514 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Banaszuk, M. Kociecki, K. Przyłuski, On Hautus-type conditions for controllability of implicit linear discrete-time systems. Circuits Syst. Signal Process. 8(3), 289–298 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Berger, T. Reis, Controllability of linear differential–algebraic systems a survey, in Surveys in Differential–Algebraic Equations I. Differential–Algebraic Equations Forum, ed. by A. Ilchman, T. Reis (Springer, Berlin, 2013), pp. 1–61

    Chapter  Google Scholar 

  5. T. Berger, S. Trenn, Kalman controllability decompositions for differential–algebraic systems. Syst. Control Lett. 71, 54–61 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Boughari, N. Radhy, Regulation of linear continuous-time singular systems with constrained states and controls. Int. J. Syst. Sci. 38(9), 689–698 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential–Algebraic Equations, vol. 14 (SIAM, Philadelphia, 1996)

    MATH  Google Scholar 

  8. A. Bunse-Gerstner, V. Mehrmann, N.K. Nichols, Regularization of descriptor systems by derivative and proportional state feedback. SIAM J. Matrix Anal. Appl. 13(1), 46–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Byers, T. Geerts, V. Mehrmann, Descriptor systems without controllability at infinity. SIAM J. Control Optim. 35(2), 462–479 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Campbell, Singular Systems of Differential Equations, vol. 40 (Pitman, San Francisco, 1980)

    MATH  Google Scholar 

  11. S. Campbell, Singular Systems of Differential Equations II, vol. 61 (Pitman, San Francisco, 1982)

    MATH  Google Scholar 

  12. M. Christodoulou, P. Paraskevopoulos, Solvability, controllability, and observability of singular systems. J. Optim. Theory Appl. 45(1), 53–72 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Chu, V. Mehrmann, Disturbance decoupling for descriptor systems by state feedback. SIAM J. Control Optim. 38(6), 1830–1858 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits (McGraw-Hill, New York, 1987)

    MATH  Google Scholar 

  15. D. Cobb, Controllability, observability, and duality in singular systems. IEEE Trans. Autom. Control 29(12), 1076–1082 (1984)

    Article  MathSciNet  Google Scholar 

  16. L. Dai, Lecture Notes in Control and Information Sciences Singular Control Systems (Springer, Berlin, 1989)

    Google Scholar 

  17. X. Dong, M. Xiao, Admissible control of linear singular delta operator systems. Circuits Syst. Signal Process. 33(7), 2043–2064 (2014)

    Article  MathSciNet  Google Scholar 

  18. G.-R. Duan, Analysis and Design of Descriptor Linear Systems, vol. 10 (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  19. E. Eich-Soellner, C. Führer, Numerical Methods in Multibody Dynamics, vol. 45 (Springer Fachmedien Wiesbaden, Berlin, 1998)

    Book  MATH  Google Scholar 

  20. L. Fletcher, M. Goodwin, An intermediate algorithm for pole placement by output feedback in descriptor systems. Circuits Syst. Signal Process. 13(2–3), 329–345 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Frankowska, On controllability and observability of implicit systems. Syst. Control Lett. 14(3), 219–225 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. F.R. Gantmacher, The Theory of Matrices, vol. 2 (Chelsea Publishing Company, New York, 1959)

    MATH  Google Scholar 

  23. T. Geerts, Solvability conditions, consistency, and weak consistency for linear differential–algebraic equations and time-invariant singular systems: the general case. Linear Algebra Appl. 181, 111–130 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Hautus, Stabilization controllability and observability of linear autonomous systems. In: Indagationes Mathematicae, vol. 73 (Elsevier, Amsterdam, 1970), pp. 448–455

  25. M. Hou, Controllability and elimination of impulsive modes in descriptor systems. IEEE Trans. Autom. Control 49(10), 1723–1729 (2004)

    Article  MathSciNet  Google Scholar 

  26. J.Y. Ishihara, M.H. Terra, Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Autom. Control 46(6), 991–994 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Kumar, P. Daoutidis, Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes, vol. 397 (CRC Press, Boca Raton, 1999)

    MATH  Google Scholar 

  28. P. Kunkel, V.L. Mehrmann, Differential–Algebraic Equations: Analysis and Numerical Solution (European Mathematical Society, Zürich, 2006)

    Book  MATH  Google Scholar 

  29. V. Lovass-Nagy, D. Powers, R. Schilling, On regularizing descriptor systems by output feedback. IEEE Trans. Autom. Control 39(7), 1507–1509 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. D.G. Luenberger, Dynamic equations in descriptor form. IEEE Trans. Autom. Control 22(3), 312–321 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  31. B. Mertzios, M. Christodoulou, Decoupling and pole-zero assignment of singular systems with dynamic state feedback. Circuits Syst. Signal Process. 5(1), 49–68 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. K. Özçaldiran, A geometric characterization of the reachable and the controllable subspaces of descriptor systems. Circuits Syst. Signal Process. 5, 37–48 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. K. Özçaldiran, F. Lewis, On the regularizability of singular systems. IEEE Trans. Autom. Control 35(10), 1156–1160 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. R. Riaza, Differential–Algebraic Systems: Analytical Aspects and Circuit Applications (World Scientific, Singapore, 2008)

    Book  MATH  Google Scholar 

  35. H.H. Rosenbrock, Structural properties of linear dynamical systems. Int. J. Control 20(2), 191–202 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  36. S.J. Small, Runge–Kutta Type Methods for Differential–Algebraic Equations in Mechanics (University of Iowa, Iowa, 2011)

    Google Scholar 

  37. G.C. Verghese, B.C. Levy, T. Kailath, A generalized state-space for singular systems. IEEE Trans. Autom. Control 26(4), 811–831 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  38. X.-R. Yang, R.-Z. Zhang, X. Zhang, Regulation of rectangular descriptor systems with constrained states and controls. In: Chinese Control and Decision Conference (IEEE, 2010), pp. 1005–1010

  39. E. Yip, R. Sincovec, Solvability, controllability, and observability of continuous descriptor systems. IEEE Trans. Autom. Control 26(3), 702–707 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  40. G. Zhang, Regularizability, controllability and observability of rectangular descriptor systems by dynamic compensation. In: American Control Conference (IEEE, 2006), pp. 4393–4398

  41. Q. Zhang, C. Liu, X. Zhang, Complexity, Analysis and Control of Singular Biological Systems, vol. 421 (Springer, New York, 2012)

    Book  MATH  Google Scholar 

  42. S.P. Zubova, On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints. Autom. Remote Control 72(1), 23–37 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research of second author was supported by the CSIR, New Delhi under Grant Number 25(0195)11/EMR-II. The authors are thankful to the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutan Kumar Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V.K., Tomar, N.K. On Complete and Strong Controllability for Rectangular Descriptor Systems. Circuits Syst Signal Process 35, 1395–1406 (2016). https://doi.org/10.1007/s00034-015-0111-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0111-8

Keywords

Navigation