Skip to main content
Log in

A Promising Technique for Blind Identification: The Generic Statistics

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The generic statistics, related to lower-order derivatives of the log characteristic function (CAF) evaluating at the processing points located away from the origin, are frequently used in multivariate statistical signal processing. In comparison with the conventional statistics, e.g., cumulants, the generic statistics have the following advantages: (a) they can offer the structural simplicity and controllable statistical stability of lower-order statistics, and retain higher-order statistical information; (b) if the derivatives of the log CAF were evaluated at all (infinitely many) possible processing-points, a complete description of the joint CAF would be obtained. Furthermore, we show in this paper that even if a random process is symmetrically distributed, the odd-order generic statistics are not equal to zero, while in such a case the odd-order cumulants are equal to zero. For these reasons, a family of blind identification (BI) methods, in which the mixing matrix is obtained by decomposing the tensor constructed by the higher order derivatives of the log CAF of the observations, is proposed to achieve BI of underdetermined mixtures. Simulation results show that the BI methods based on generic statistics have superior performance to the existing cumulant-based method, such as FOOBI method, especially, when the SNR of the observations is high and/or the data block is short.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Aissa-EI-Bey, N. Linh-Trung, K. Abed-Meraim, A. Belouchrani, Y. Grenier, Underdetermined blind separation of nondisjoint sources in the time-frequency domain. IEEE Trans. Signal Process. 55(3), 897–907 (2007)

    Article  MathSciNet  Google Scholar 

  2. L. Albera, A. Ferreol, P. Comon, P. Chevalier, Sixth order blind identification of under-determined mixtures (BIRTH) of sources, in 4th International Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, pp. 909–914 (2003)

  3. L. Albera, A. Ferréol, P. Comon, P. Chevalier, Blind identification of over-complete mixtures of sources (BIOME). Linear Algebra Appl. 391, 1–30 (2004)

    Article  MATH  Google Scholar 

  4. D. Astèly, A.L. Swindlehurst, B. Ottersten, Spatial signature estimation for uniform linear arrays with unknown receivers gains and phases. IEEE Trans. Signal Process. 47(8), 2128–2138 (1999)

    Article  Google Scholar 

  5. A. Belouchrani, K. Abed-Meraim, J.F. Cardoso, E. Moulines, A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45(2), 434–444 (1997)

    Article  Google Scholar 

  6. Y. Chen, D. Han, L. Qi, New ALS methods with extrapolating search directions and optimal step size for complex-valued tensor decompositions. IEEE Trans. Signal Process. 59(12), 5888–5898 (2011)

    Article  MathSciNet  Google Scholar 

  7. P. Comon, M. Rajih, Blind identification of underdetermined mixtures based on the characteristic function. Signal Process. 86(9), 2271–2281 (2006)

    Article  MATH  Google Scholar 

  8. A.L.F. de Almeida, X. Luciani, P. Comon, Blind identification of underdetermined mixtures based on the hexacovariance and higher-order cyclostationarity, in IEEE Workshop on Statistical Signal Processing, Cardiff, UK, pp. 669–672 (2009)

  9. A.L.F. de Almeida, X. Luciani, P. Comon, Fourth-order CONFAC decomposition approach for blind identification of underdetermined mixtures, in Proceedings of 20th European Signal Processing Conference, Bucarest, Romania, pp. 709–712 (2012)

  10. A.L.F. de Almeida, X. Luciani, A. Stegeman, P. Comon, CONFAC decomposition approach to blind identification of underdetermined mixtures based on generating function derivatives. IEEE Trans. Signal Process. 60(11), 5698–5713 (2012)

    Article  MathSciNet  Google Scholar 

  11. E. Eidinger, A. Yeredor, Blind MIMO identification using the second characteristic function. IEEE Trans. Signal Process. 53(11), 4067–4079 (2005)

    Article  MathSciNet  Google Scholar 

  12. T. Eltoft, T. Kim, T. Lee, On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13(5), 300 (2006)

    Article  Google Scholar 

  13. A. Ferréol, L. Albera, P. Chevalier, Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM). IEEE Trans. Signal Process. 53(5), 1640–1653 (2005)

    Article  MathSciNet  Google Scholar 

  14. F. Gu, H. Zhang, D. Zhu, Blind separation of complex sources using the generalized generating function. IEEE Signal Process. Lett. 20(1), 74–77 (2013)

    Article  Google Scholar 

  15. F. Gu, H. Zhang, W. Wang, D. Zhu, Generalized generating function with tucker decomposition and alternating least squares for underdetermined blind identification. EURASIP J. Adv. Signal Process. (2013). doi:10.1086/1687-6180-2013-124

  16. F. Gu, H. Zhang, S. Wang, D. Zhu, Blind identification of underdetermined mixtures with complex sources using the generalized generating function. Circuits Syst. Signal Process. (2014). doi:10.1007/s00034-014-9858-6

  17. M.I. Gurelli, C.L. Nikias, Blind identification and array processing applications of generalized higher-order statistics, in Proceedings of the Military Communication Conference, pp. 838–842 (1996)

  18. A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Comput. 9, 1483–1492 (1997)

    Article  Google Scholar 

  19. A. Karfoul, L. Albera, G. Birot, Blind underdetermined mixture identification by joint canonical decomposition of HO cumulants. IEEE Trans. Signal Process. 58(2), 638–649 (2010)

    Article  MathSciNet  Google Scholar 

  20. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. L.D. Lathauwer, B.D. Moor, J. Vandewalle, On the best rank-1 and rank-(\(R_{1}, R_{2}, {\ldots }, R_{N})\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. L.D. Lathauwer, J. Castaing, J.F. Cardoso, Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)

    Article  MathSciNet  Google Scholar 

  23. L.D. Lathauwer, J. Castaing, Blind identification of underdetermined mixtures by simultaneous matrix diagonalization. IEEE Trans. Signal Process. 56(3), 1096–1105 (2008)

    Article  MathSciNet  Google Scholar 

  24. X. Luciani, A.L.F. de Almeida, P. Comon, Blind identification of underdetermined mixtures based on the characteristic function: the complex case. IEEE Trans. Signal Process. 59(2), 540–553 (2011)

    Article  MathSciNet  Google Scholar 

  25. J.M. Mendel, Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc. IEEE 79(3), 278–315 (1991)

    Article  Google Scholar 

  26. D. Nion, L.D. Lathauwer, An enhanced line search scheme for complex-valued tensor decompositions: application in DS-CDMA. Signal Process. 88(3), 749–755 (2008)

    Article  MATH  Google Scholar 

  27. M. Rajih, P. Comon, Alternating least squares identification of underdetermined mixtures based on the characteristic function, in IEEE ICASSP 2006, Toulouse, France, pp. III–117/III–120

  28. Y. Rong, S.A. Vorobyov, A.B. Gershman, N.D. Sidiropoulos, Blind spatial signature estimation via time-varying user power loading and parallel factor analysis. IEEE Trans. Signal Process. 53(5), 1697–1710 (2005)

    Article  MathSciNet  Google Scholar 

  29. A. Slapak, A. Yeredor, Charrelation and charm: generic statistics incorporating higher-order information. IEEE Trans. Signal Process. 60(10), 5089–5106 (2012)

    Article  MathSciNet  Google Scholar 

  30. P. Tichavský, Z. Koldovský, Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources. IEEE Trans. Signal Process. 59(3), 1037–1047 (2011)

    Article  Google Scholar 

  31. K. Todros, J. Tabrikian, Blind separation of independent sources using Gaussian mixture model. IEEE Trans. Signal Process. 55(7), 3645–3658 (2007)

    Article  MathSciNet  Google Scholar 

  32. S. Xie, L. Yang, J. Yang, G. Zhou, Y. Xiang, Time-frequency approach to underdetermined blind source separation. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 306–316 (2012)

    Article  Google Scholar 

  33. A. Yeredor, Blind source separation via the second characteristic function. Signal Process. 80(5), 897–902 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lieven De Lathauwer for sharing the Matlab codes of FOOBI algorithm. They also thank the anonymous reviewers for their careful reading and helpful remarks, which have contributed to improving the clarity of the paper. This work was supported in part by the Major Projects of the National Natural Science Foundation of China under Grant 91338105, and the foundation of Science and Technology on Information Transmission and Dissemination in Comm. Networks Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanglin Gu.

Appendices

Appendix A

1.1 Proof of Eq. (7)

In this Appendix, we show the computational details of equation in (7). First, the differentiation of (7) with respect to \(u_{q_{1}}\) gives

$$\begin{aligned} \frac{\partial \psi _{x} (\mathbf{u})}{\partial u_{q_{1}} }= & {} \sum \nolimits _{p=1}^{P} {\frac{\partial \left( {\varphi _{p} \left( \sum \nolimits _{q} {A_{qp} u_{q}}\right) } \right) }{\partial \left( {\sum \nolimits _{q} {A_{qp} u_{q} } } \right) }\frac{\partial \left( {\sum \nolimits _{q} {A_{qp} u_{q}} } \right) }{\partial u_{q_{1}}}} \nonumber \\= & {} \sum \nolimits _{p=1}^{P} {A_{q_{1 p}}} \frac{\partial \left( {\varphi _{p} \left( \sum \nolimits _{q} {A_{qp} u_{q}}\right) } \right) }{\partial \left( {\sum \nolimits _{q} {A_{qp} u_{q}}} \right) } \end{aligned}$$
(17)

Similarly, the differentiation of (7) with respect to \((u_{q_{1}} ,u_{q_{2}} ,\ldots ,u_{q_{K}})\) gives

$$\begin{aligned} \frac{\partial ^{(K)}\psi _{x} (\mathbf{u})}{\partial u_{q_1 } \partial u_{q_{2}} \cdots \partial u_{q_{K}}}= & {} \sum \nolimits _{p=1}^P {A_{q_{1 p}} \cdots A_{q_{K-1}p} \frac{\partial ^{(K)}\left( {\varphi _{p} \left( \sum \nolimits _{q} {A_{qp} u_{q} } \right) } \right) }{\partial \left( {\sum \nolimits _{q} {A_{qp} u_{q} } } \right) ^{K}}\frac{\partial \left( {\sum \nolimits _{q} {A_{qp} u_{q}}} \right) }{\partial u_{q_{K}}}} \nonumber \\= & {} \sum \nolimits _{p=1}^{P} {A_{q_{1 p}} \cdots A_{q_{K p}} \frac{\partial ^{(K)}\left( {\varphi _{p} \left( \sum \nolimits _{q} {A_{qp} u_{q} } \right) } \right) }{\partial \left( {\sum \nolimits _{q} {A_{qp} u_{q} } } \right) ^{K}}} \end{aligned}$$
(18)

Defining \(C_{K,p} ={\partial ^{(K)}\left( {\varphi _{p} (\sum \nolimits _{q} {A_{qp} u_{q} } )} \right) }\big /{\partial \left( {\sum \nolimits _{q} {A_{qp} u_{q}}} \right) ^{K}}\), we can rewrite (18) in a more compact form as in (7).

Appendix B

1.1 Proof of Theorem 1

Lemma

Suppose z is a random variable with a \(K\hbox {th}\)-order cumulant. Then, for any \(b\in {R}, z+b\) has a \(K\hbox {th}\)-order cumulant and

$$\begin{aligned} C_{K,z} (z+b)=\left\{ {\begin{array}{ll} C_{K,z} (z)+b,&{}\hbox { if }K=1 \\ C_{K,z} (z),&{}\hbox { if }K\ne 1 \\ \end{array}} \right. \end{aligned}$$
(19)

Proof

According to the definition of the generating function in (2), we obtain

$$\begin{aligned} \phi _{z+b} (u)= & {} {E}[\exp (v(z+b))]=\exp (vb){E}[\exp (vz)] \\\Rightarrow & {} \varphi _{z+b} (v)=vb+\varphi _{z} (v) \\\Rightarrow & {} {{\hbox {d}}^{(K)}\varphi _{z+b} (v)}\big /{{\hbox {d}}v^{K}}={{\hbox {d}}^{(K)}(vb)}\big /{{\hbox {d}}v^{K}}+{{\hbox {d}}^{(K)}\varphi _{z} (v)}\big /{{\hbox {d}}v^{K}} \end{aligned}$$

Since \(C_{K,z} ={{\hbox {d}}^{(K)}\varphi _{z} (v)}\big /{{\hbox {d}}v^{K}}\left| {_{v=0} } \right. \), Eq. (19) holds. \(\square \)

Suppose z is a random process which is symmetrically distributed. According to Lemma, the cumulants of z are not affected by adding a constant to z. Hence, we can further assume that z has zero mean.

Because the probability density function f(z) and the mean of random variable z are symmetric and zero, respectively, then, we obtain

$$\begin{aligned} \phi _{z}^{(2k+1)}(v)\left| {_{v=0} } \right. ={E}[z^{2k+1}]=\int _{z} {z^{2k+1}f(z)dz} =0 \end{aligned}$$
(20)

On the other hand, exploiting the relationship between GF and CGF, we derive

$$\begin{aligned} \varphi _{z} (v)=\log {E}(\exp (vz))=\log (\phi _{z} (v)) \end{aligned}$$
(21)

Differentiating (21) with respect to u gives

$$\begin{aligned} \phi _{z}^{\prime }(v)=\phi _{z} (v)\varphi _{z}^{\prime }(v) \end{aligned}$$
(22)

and evaluating (22) at \(v=0\) gives \(M_{1,z} =C_{1,z} =0\). Thus, Theorem 1 holds when the order is 1.

Differentiating (21) \(2k+1\) times and evaluating at \(v=0\) gives

$$\begin{aligned} \phi _{z}^{(2k+1)}(0)=\sum \limits _{j=0}^{2k} {\phi _{z}^{(j)}(0)\varphi _{z}^{(2k+1-j)}(0)} \end{aligned}$$
(23)

If \(j=2m+1, m=1,\ldots ,k\), using the property shown in Eq. (20), we obtain \(\phi _{z}^{(j)}(0)\varphi _{z}^{(2k+1-j)}(0)=0\); else if \(j=2m, m=1,\ldots ,k\), then, \(2k+1-j\) is odd. Therefore, \(\phi _{z}^{(j)}(0)\varphi _{z}^{(2k+1-j)}(0)=0\) also holds true based on assumption that Theorem 1 holds true when the order is lower than \(2k+1\) and odd. It is interesting to mention that it agrees with the mathematical induction idea.

In all, Theorem 1 follows.

Appendix C

1.1 Proof of Theorem 2

Suppose z is a random process which is symmetrically distributed. According to Theorem 1, its odd-order cumulant is equal to zero, i.e.,

$$\begin{aligned} C_{2k-1,z} ={{\hbox {d}}^{(2k-1)}\varphi _{z} (v)}\big /{{\hbox {d}}v^{2k-1}}\left| {_{v=0} } \right. =0 \end{aligned}$$
(24)

Note that its 2k-order cumulants are not null. That is

$$\begin{aligned} C_{2k,z} ={{\hbox {d}}^{(2k)}\varphi _{z} (v)}\big /{{\hbox {d}}v^{2k}}\left| {_{v=0} } \right. \ne 0 \end{aligned}$$
(25)

Therefore, \({{\hbox {d}}^{(2k-1)}\varphi _{z} (v)}\big /{{\hbox {d}}v^{2k-1}}\) is a monotone function for v near 0. Thus, we obtain

$$\begin{aligned} {{\hbox {d}}^{(2k-1)}\varphi _{z} (v)}\big /{{\hbox {d}}v^{2k-1}}\left| {_{v\rightarrow 0} } \right.= & {} {\hbox {d}}^{(2k-1)}\varphi _{z} (0)+{\hbox {d}}^{(2k)}\varphi _{z} (0)\times v\nonumber \\\ne & {} 0 \end{aligned}$$
(26)

Thus, Theorem 2 holds true.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, F., Zhang, H., Wang, W. et al. A Promising Technique for Blind Identification: The Generic Statistics. Circuits Syst Signal Process 35, 2544–2562 (2016). https://doi.org/10.1007/s00034-015-0162-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0162-x

Keywords

Navigation