Skip to main content
Log in

Dynamic Error-Compensated Fixed-Width Booth Multiplier Based on Conditional-Probability of Input Series

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a dynamic error-compensated circuit for a fixed-width Booth multiplier based on the conditional probability of input series (CPIS), which enables high-speed operation and low circuit overhead. The dynamic compensated value is produced directly from the multiplier of input series simultaneously with the Booth encoder and therefore does not affect the critical path. The compensated formula is derived using a mathematical probability model, rather than time-consuming simulation. This formula is a function of bit-length of the multiplier; thus, the compensated circuit is easily implemented for bit-length of 32, 64, or longer. Accuracy-efficiency, which indicates the signal-to-noise ratio per unit area and unit delay, is included for ease of comparison. Compared with previous works, the greatest advantage of the proposed CPIS is high speed. Furthermore, the proposed CPIS achieves higher accuracy-efficiency. Implemented using the TSMC 0.18-\(\upmu \)m CMOS process, the proposed 32-bit Booth multiplier has an operation frequency of 50 MHz with power consumption of 7.3 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Bougas, P. Kalivas, A. Tsirikos, K.Z. Pekmestzi, Pipelined array-based FIR filter folding. IEEE Trans. Circuits Syst. I 52(1), 108–118 (2005)

    Article  MathSciNet  Google Scholar 

  2. Y.H. Chen, T.Y. Chang, R.Y. Jou, A statistical error-compensated Booth multiplier and its DCT applications. In Proceedings IEEE Region 10 Conference (2010), pp. 1146–1149

  3. Y.H. Chen, C.Y. Li, T.Y. Chang, Area-effective and power-efficient fixed-width Booth multipliers using generalized probabilistic estimation bias. IEEE J. Emerg. Sel. Top. Circuits Syst. 1(3), 277–288 (2011)

    Article  Google Scholar 

  4. Y.H. Chen, T.Y. Chang, A high-accuracy adaptive conditional-probability estimator for fixed-width Booth multipliers. IEEE Trans. Circuits Syst. I 59(3), 594–603 (2012)

    Article  MathSciNet  Google Scholar 

  5. Y.H. Chen, An accuracy-adjustment fixed-width Booth multiplier based on multilevel conditional probability. IEEE Trans. VLSI Syst. 23(1), 203–207 (2015)

    Article  Google Scholar 

  6. C.H. Chang, J. Gu, M. Zhang, Ultra low-voltage low-power CMOS 4-2 and 5-2 compressors for fast arithmetic circuits. IEEE Trans. Circuits Syst. I 51(10), 1985–1997 (2004)

    Article  Google Scholar 

  7. G. Goto, A. Inoue, R. Ohe, S. Kashiwakura, S. Mitarai, T. Tsuru, T. Izawa, A 4.1-ns compact 54\(\times \)54-b multiplier utilizing sign-select Booth encoders. IEEE J. Solid-State Circuits 32(11), 1676–1682 (1997)

    Article  Google Scholar 

  8. S.C. Hsia, S.H. Wang, Shift-register-based data transposition for cost-effective discrete cosine transform. IEEE Trans. VLSI Syst. 15(6), 725–728 (2007)

    Article  MathSciNet  Google Scholar 

  9. W.Q. He, C.Y. Liu, W.Y. Liu, Y.H. Chen, A high accuracy fixed-width Booth multiplier using select probability estimation bias. In IEEE International Conference on Information Science and Technology (ICIST) (2014), pp. 385–388

  10. S.J. Jou, M.H. Tsai, Y.L. Tsao, Low-error reduced-width Booth multipliers for DSP applications. IEEE Trans. Circuits Syst. I 50(11), 1470–1474 (2003)

    Article  Google Scholar 

  11. T.B. Juang, S.F. Hsiao, Low-error carry-free fixed-width multipliers with low-cost compensation circuits. IEEE Trans. Circuits Syst. II 52(6), 299–303 (2005)

    Article  MathSciNet  Google Scholar 

  12. S.M. Kim, J.G. Chung, K.K. Parhi, Low error fixed-width CSD multiplier with efficient sign extension. IEEE Trans. Circuits Syst. II 50(12), 984–993 (2003)

    Article  Google Scholar 

  13. S.R. Kuang, J.P. Wang, C.Y. Guo, Modified Booth multipliers with a regular partial product array. IEEE Trans. Circuits Syst. II 56(5), 404–408 (2009)

    Article  Google Scholar 

  14. C.Y. Li, Y.H. Chen, T.Y. Chang, J.N. Chen, A probabilistic estimation bias circuit for fixed-width Booth multiplier and its DCT applications. IEEE Trans. Circuits Syst. II 58(4), 215–219 (2011)

    Article  Google Scholar 

  15. H.Y. Lee, I.C. Park, Balanced binary-tree decomposition for area-efficient pipelined FFT processing. IEEE Trans. Circuits Syst. I 54(4), 889–900 (2007)

    Article  Google Scholar 

  16. V.G. Oklobdzija, D. Villeger, S.S. Liu, A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach. IEEE Trans. Comput. 45(3), 294–306 (1996)

    Article  MATH  Google Scholar 

  17. B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs (Oxford University Press, Oxford, 2000)

    Google Scholar 

  18. A.G.M. Strollo, N. Petra, D. DeCaro, Dual-tree error compensation for high performance fixed-width multipliers. IEEE Trans. Circuits Syst. II 52(8), 501–507 (2005)

    Article  Google Scholar 

  19. M.A. Song, L.D. Van, S.Y. Kuo, Adaptive low-error fixed-width Booth multipliers. IEICE Trans. Fundam. E90–A(6), 1180–1187 (2007)

    Article  Google Scholar 

  20. B. Shao, P. Li, Array-based approximate arithmetic computing: a general model and applications to multiplier and aquarer design. IEEE Trans. Circuits Syst. I 62(4), 1081–1090 (2015)

    Article  MathSciNet  Google Scholar 

  21. L.D. Van, S.S. Wang, W.S. Feng, Design of the lower error fixed-width multiplier and its application. IEEE Trans. Circuits Syst. II 47(10), 1112–1118 (2000)

    Article  Google Scholar 

  22. D. Villeger, V.G. Oklobdzija, Evaluation of Booth encoding techniques for parallel multiplier implementation. Electron. Lett. 29(23), 2016–2017 (1993)

    Article  Google Scholar 

  23. I.C. Wey, C.C. Wang, Low-error and hardware-efficient fixed-width multiplier by using the dual-group minor input correction vector to lower input correction vector compensation error. IEEE Trans. VLSI Syst. 20(10), 1923–1928 (2012)

    Article  Google Scholar 

  24. J.P. Wang, S.R. Kuang, S.C. Liang, High-accuracy fixed-width modified Booth multipliers for lossy applications. IEEE Trans. VLSI Syst. 19(1), 52–60 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Chip Implementation Center (CIC), Taiwan, for providing the standard cell and electronic design automation tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ho Chen.

Additional information

This work was supported in part by the Ministry of Science and Technology, Chip implementation Center, and Chang Gung University under Project Number MOST 104-2221-E-182 -079, CIC T18-102D-E0031, and UERPD2E0051, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, WQ., Chen, YH. & Jou, SJ. Dynamic Error-Compensated Fixed-Width Booth Multiplier Based on Conditional-Probability of Input Series. Circuits Syst Signal Process 35, 2972–2991 (2016). https://doi.org/10.1007/s00034-015-0186-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0186-2

Keywords

Navigation