Skip to main content
Log in

Design of Nonuniform Transmultiplexers with Block Samplers and Single-Input Single-Output Linear Time-Invariant Filters Based on Perfect Reconstruction Condition

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a design of a nonuniform transmultiplexer with block samplers and single-input single-output linear time-invariant filters. First, the perfect reconstruction condition of the nonuniform transmultiplexer is derived. Then, the design problem is formulated as an optimization problem. In particular, the perfect reconstruction error is minimized in the \(L_{1}\) norm sense subject to the frequency selectivities of the filters. Computer numerical simulation results show that the designed nonuniform transmultiplexer with block samplers is robust to the channel noise and achieves a small reconstruction error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Coulombe, E. Dubois, Nonuniform perfect reconstruction filter banks over lattices with application to transmultiplexers. IEEE Trans. Signal Process. 47(4), 1010–1023 (1999)

    Article  Google Scholar 

  2. A. Eghbali, H. Johansson, P. Löwenborg, Reconfigurable nonuniform transmultiplexers using uniform modulated filter banks. IEEE Trans. Circuits Syst. I Regul. Pap. 58(3), 539–547 (2011)

    Article  MathSciNet  Google Scholar 

  3. Y.F. Ho, W.K. Ling, Z.W. Chi, M. Shikh-Bahaei, Y.Q. Liu, K.L. Teo, Design of near-allpass strictly stable minimal-phase real-valued rational IIR filters. IEEE Trans. Circuits Syst. II Express Br. 55(8), 781–785 (2008)

    Article  Google Scholar 

  4. Y.F. Ho, W.K. Ling, Y.Q. Liu, K.S. Tam, K.L. Teo, Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming. IEEE Trans. Signal Process. 53(7), 2598–2603 (2005)

    Article  MathSciNet  Google Scholar 

  5. Y.F. Ho, W.K. Ling, K.S. Tam, Representation of linear dual-rate system via single SISO LTI filter, conventional sampler and block sampler. IEEE Trans. Circuits Syst. II Express Br. 55(2), 168–172 (2008)

    Article  MathSciNet  Google Scholar 

  6. P.Q. Hoang, P.P. Vaidyanathan, Non-uniform multirate filter banks: theory and design. In International Symposium on Circuits and Systems, ISCAS, vol 1, pp. 371–374 (1989)

  7. M.R.K. Khansari, A. Leon-Garcia, Subband decomposition of signals with generalized sampling. IEEE Trans. Signal Process. 41(12), 3365–3376 (1993)

    Article  MATH  Google Scholar 

  8. T. Liu, T.W. Chen, Design of multichannel nonuniform transmultiplexers using general building blocks. IEEE Trans. Signal Process. 49(1), 91–99 (2001)

    Article  Google Scholar 

  9. V.J. Manoj, E. Elias, Artificial bee colony algorithm for the design of multiplier-less nonuniform filter bank transmultiplexer. Inf. Sci. 192, 193–203 (2012)

    Article  Google Scholar 

  10. V.J. Manoj, E. Elias, Design of multiplier-less nonuniform filter bank transmultiplexer using genetic algorithm. Signal Process. 89, 2274–2285 (2009)

    Article  MATH  Google Scholar 

  11. V.J. Manoj, E. Elias, Design of non-uniform filter bank transmultiplexer with canonical signed digital filter coefficients. IET Signal Process. 3(3), 211–220 (2009)

    Article  MathSciNet  Google Scholar 

  12. K. Nayebi, T.P. Barnwell III, M.J.T. Smith, Nonuniform filter banks: a reconstruction and design theory. IEEE Trans. Signal Process. 41(3), 1114–1127 (1993)

    Article  MATH  Google Scholar 

  13. Y. Shi, T.W. Chen, Optimal design of multichannel transmultiplexers with stopband energy and passband magnitude constraints. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 50(9), 659–662 (2003)

    Article  Google Scholar 

  14. X.G. Xia, B.W. Suter, Multirate filter banks with block sampling. IEEE Trans. Signal Process. 44(3), 484–496 (1996)

    Article  Google Scholar 

  15. X.M. Xie, S.C. Chan, T.I. Yuk, Design of perfect-reconstruction nonuniform recombination filter banks with flexible rational sampling factors. IEEE Trans. Circuits Syst. I Regul. Pap. 52(9), 1965–1981 (2005)

    Article  Google Scholar 

  16. X.M. Xie, S.C. Chan, T.I. Yuk, Design of linear-phase recombination nonuniform filter banks. IEEE Trans. Signal Process. 54(7), 2809–2814 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported partly by the National Nature Science Foundation of China (No. 61372173), the Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent (No. 501130144), the Hundred People Plan from the Guangdong University of Technology and the Young Thousand People Plan from the Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingo Wing-Kuen Ling.

Appendix: The Proof of Theorem 1

Appendix: The Proof of Theorem 1

Proof

Since

$$\begin{aligned} G_{j,i} (z )= & {} H_{j}(z )F_{i}(z )=\left( {\sum \limits _{k=0}^{M-1} {z^{-k}H_{j,k} ({z^{M}} )}} \right) \left( {\sum \limits _{k=0}^{M-1} {z^{-k}F_{i,k} ({z^{M}} )}} \right) \\= & {} \left( {H_{j,0} ({z^{M}} )+z^{-1}H_{j,1} ({z^{M}} )+\cdots +z^{-({M-1} )}H_{j,M-1} ({z^{M}} )} \right) \left( F_{i,0} ({z^{M}} )\right. \\&+\,z^{-1}F_{i,1} ({z^{M}} )+\cdots +z^{-({M-1} )}F_{i,M-1} ({z^{M}} )) \\= & {} H_{j,0} ({z^{M}} )F_{i,0} ({z^{M}} )+z^{-1}H_{j,0} ({z^{M}} )F_{i,1} ({z^{M}} )\\&+\cdots +z^{-({M-1} )}H_{j,0} ({z^{M}} )F_{i,M-1} ({z^{M}} ) \\&+\,z^{-1}H_{j,1} ({z^{M}} )F_{i,0} ({z^{M}} )+z^{-2}H_{j,1} ({z^{M}} )F_{i,1} ({z^{M}} )\\&+\cdots +z^{-M}H_{j,1} ({z^{M}} )F_{i,M-1} ({z^{M}} ) \\&+\cdots \\&+\,z^{-({M-1} )}H_{j,M-1} ({z^{M}} )F_{i,0} ({z^{M}} )+z^{-M}H_{j,M-1} ({z^{M}} )F_{i,1} ({z^{M}} )\\&+\cdots +z^{-2({M-1} )}H_{j,M-1} ({z^{M}} )F_{i,M-1} ({z^{M}} ) \\= & {} H_{j,0} ({z^{M}} )F_{i,0} ({z^{M}} )+\,z^{-1}H_{j,0} ({z^{M}} )F_{i,1} ({z^{M}} )\\&+\cdots +z^{-({M-1} )}H_{j,0} ({z^{M}} )F_{i,M-1} ({z^{M}} ) \\&+\,z^{-M}H_{j,1} ({z^{M}} )F_{i,M-1} ({z^{M}} )+z^{-1}H_{j,1} ({z^{M}} )F_{i,0} ({z^{M}} )\\&+\,z^{-2}H_{j,1} ({z^{M}} )F_{i,1} ({z^{M}} )\\&+\cdots +z^{-({M-1} )}H_{j,1} ({z^{M}} )F_{i,M-2} ({z^{M}} ) \\&+\cdots \\&+\,z^{-M}H_{j,M-1} ({z^{M}} )F_{i,1} ({z^{M}} )+z^{-({M+1} )}H_{j,M-1} ({z^{M}} )F_{i,2} ({z^{M}} )\\&+\cdots +z^{-({2M-2} )}H_{j,M-1} ({z^{M}} )F_{i,M-1} ({z^{M}} )\\&+\,z^{-({M-1} )}H_{j,M-1} ({z^{M}} )F_{i,0} ({z^{M}} ) \\= & {} \sum \limits _{k=0}^{M-1} {\sum \limits _{l=0}^{M-1} {z^{-\left( {\hbox {mod}({M+k-l,M} )+l} \right) }H_{j,\hbox {mod}({M+k-l,M} )} ({z^{M}} )F_{i,l} ({z^{M}} )}} \\= & {} \sum \limits _{k=0}^{M-1} {\sum \limits _{l=0}^{M-1} {z^{-({k+\frac{M}{2}\left( {1+\hbox {sgn}_{1}({l-k} )} \right) } )}H_{j,\hbox {mod}({M+k-l,M} )} ({z^{M}} )F_{i,l} ({z^{M}} )}} \\= & {} \sum \limits _{k=0}^{M-1} {z^{-k}G_{j,i,k} ({z^{M}} )}, \end{aligned}$$

we have \(G_{j,i,k} ({z^{M}} )=\sum \limits _{l=0}^{M-1} {z^{-\frac{M}{2}\left( {1+\hbox {sgn}_{1}({l-k} )} \right) }H_{j,\hbox {mod}({M+k-l,M} )} ({z^{M}} )F_{i,l} ({z^{M}} )} \) for \(i=0,1,\ldots ,N-1\), for \(j=0,1,\ldots ,N-1\) and for \(k=0,1,\ldots ,M-1\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Ling, B.WK., Dai, Q. et al. Design of Nonuniform Transmultiplexers with Block Samplers and Single-Input Single-Output Linear Time-Invariant Filters Based on Perfect Reconstruction Condition. Circuits Syst Signal Process 35, 4081–4098 (2016). https://doi.org/10.1007/s00034-015-0238-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0238-7

Keywords

Navigation