Skip to main content
Log in

Nonnegative Mixture for Underdetermined Blind Source Separation Based on a Tensor Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, a tensor algorithm is proposed to blindly separate an instantaneous linear underdetermined mixture with non-stationary sources and nonnegative mixing matrix. It proceeds in two steps: 1) estimating the mixing matrix and 2) recovering the source signals. First, a canonical tensor model is constructed using a fourth-order cumulant tensor of the observed signals to estimate the mixing matrix. Then, an improved hierarchical alternating least squares algorithm is used to decompose the canonical tensor model, which ensures that all elements of the mixing matrix are positive. Finally, the sources are recovered using a minimum mean-squared error beamformer approach without any hypothetical limitation. We apply two classes of data (speech signals and biomedical signals) to substantiate the effectiveness of the proposed algorithm for underdetermined blind source separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Abrard, Y. Deville, A time–frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process. 85(7), 1389–1403 (2005)

    Article  MATH  Google Scholar 

  2. E. Acar, B. Yener, Unsupervised multiway data analysis: a literature survey. IEEE Trans. Knowl. Data Eng. 21(1), 6–20 (2009)

    Article  Google Scholar 

  3. S. Araki, H. Sawada, R. Mukai, S. Makino, Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors. Signal Process. 87(8), 1833–1847 (2007)

    Article  MATH  Google Scholar 

  4. A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  5. J.F. Cardoso, Blind signal separation: statistical principles. Proc. IEEE 86(10), 2009–2025 (1998)

    Article  Google Scholar 

  6. J.F. Cardoso, Higher-order contrasts for independent component analysis. Neural Comput. 11(1), 157–192 (1999)

    Article  MathSciNet  Google Scholar 

  7. A. Cichocki, A.H. Phan, C. Caiafa, Flexible HALS algorithms for sparse nonnegative matrix/tensor factorization. in Proceedings MLSP (2008), pp. 73–78

  8. A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Wiley, United Kingdom, 2009)

    Book  Google Scholar 

  9. L. Cohen, Time–Frequency Analysis: Theory and Applications (Prentice Hall, New York, 1995)

    Google Scholar 

  10. P. Common, Blind identification and source separation in 2\(\times \)3 underdetermined mixtures. IEEE Trans. Signal Process. 52(1), 11–22 (2004)

    Article  MathSciNet  Google Scholar 

  11. P. Comon, Independent component analysis, a new concept. Signal Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  12. Y.C. Eldar, A. Nehorai, P.S.L. Rose, A competitive mean-squared error approach to beamformer. IEEE Trans. Signal Process. 55(11), 5143–5154 (2007)

    Article  MathSciNet  Google Scholar 

  13. A. Ferreol, P. Chevalier, L. Albera, Higher order blind separation of nonzero-mean cyclostationary sources. in Proceedings EUSIPCO (2002), pp. 103–106

  14. A. Ferreol, L. Albera, P. Chevalier, Fourth-order blind identification of underdetermined mixtures of sources. IEEE Trans. Signal Process. 53(1), 1640–1653 (2005)

    Article  MathSciNet  Google Scholar 

  15. S.N. Ge, M. Han, Principal component analysis tensor decomposition method to remove ocular artifact. in Proceedings ICICIP 2012 (2012), pp. 664–669

  16. A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  17. ICALAB. http://www.bsp.brain.riken.jp/ICALAB

  18. M. Jing, T.M. McGinnity, S. Colemean, H.Z. Zhang, A. Fuchs, J.A.S. Kelso, Enhancement of fiber orientation distribution reconstruction in diffusion-weighted imaging by single channel blind source separation. IEEE Trans. Biomed. Eng. 59(2), 363–373 (2012)

    Article  Google Scholar 

  19. A. Jourjine, S. Rickard, O. Yilmaz, Blind separation of disjoint orthogonal signals: demixing n sources from 2 mixtures. in Proceedings ICASSP 2000 (2000), pp. 2985–2988

  20. S.G. Kim, C.D. Yoo, Underdetermined blind source separation based on subspace representation. IEEE Trans. Signal Process. 57(7), 2604–2614 (2009)

    Article  MathSciNet  Google Scholar 

  21. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Koldovsky, P. Tichavsky, A.H. Phan, A. Cichocki, A two-stage MMSE beamformer for underdetermined signal separation. IEEE Trans. Signal Process. 20(12), 1227–1230 (2013)

    Article  Google Scholar 

  23. L.D. Lathauwer, J. Castaing, J.F. Cardoso, Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. L.D. Lathauwer, J. Castating, Blind identification of underdetermined mixtures by simultaneous matrix diagonalization. IEEE Trans. Signal Process. 56(3), 1096–1105 (2008)

    Article  MathSciNet  Google Scholar 

  25. Q.V. Le, A. Karpenko, J.Q. Ngiam, A.Y. Ng, ICA with reconstruction cost for efficient overcomplete feature learning. in Proceedings NIPS (2011), pp. 1017–1025

  26. H.L. Liu, C.J. Yao, J.X. Hou, A new algorithm for the underdetermined blind source separation based on sparse component analysis. Int. J. Pattern Recognit. Artif. Intell. 23(1), 71–85 (2009)

    Article  MATH  Google Scholar 

  27. N. Mitianoudis, T. Stathaki, Overcomplete source separation using Laplacian mixture models. IEEE Signal Process. Lett. 12(4), 1–9 (2005)

    Article  Google Scholar 

  28. N. Mitianoudis, A generalized directional Laplacian distribution estimation, mixture models and audio source separation. IEEE Trans. Speech Audio Lang. Process. 20(9), 2397–2408 (2012)

    Article  Google Scholar 

  29. G.R. Naik, D.K. Kumar, An overview of independent component analysis and its applications. Informatica 35(1), 63–81 (2011)

    MATH  Google Scholar 

  30. G.R. Naik, D.K. Kumar, Dimensional reduction using blind source separation for identifying sources. Int. J. Innov. Comput. Inf. Control. 7(2), 1349–4198 (2011)

    Google Scholar 

  31. G.R. Nail, D.K. Kumar, Determining number of independent source in undercomplete mixture. EURASIP J. Adv. Signal Process. 2009(51), 1–5 (2009)

    Google Scholar 

  32. D. Nion, N.D. Sidiroupoulos, Adaptive algorithm to track the PARAFAC decomposition of a third-order tensor. IEEE Trans. Signal Process. 57(6), 2299–2310 (2009)

    Article  MathSciNet  Google Scholar 

  33. D. Nion, K.N. Mokios, N.D. Sidiroupoulos, A. Potamianos, Batch and adaptive PARAFAC-based blind separation of convolutive speech mixtures. IEEE Trans. Speech Audio Lang. Process. 18(6), 1193–1207 (2010)

    Article  Google Scholar 

  34. D.Z. Peng, Y. Xiang, Underdetermined blind source separation based on relaxed sparsity condition of sources. IEEE Trans. Signal Process. 57(2), 809–814 (2009)

    Article  MathSciNet  Google Scholar 

  35. A.H. Phan, A. Cichocki, Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification. Neural Comput. 74(11), 1956–1969 (2011)

    Google Scholar 

  36. S. Rickard, R. Balan, J. Rosca, Real-time time–frequency based blind source separation. in Proceedings ICA (2001), pp. 651–656

  37. H. Snoussi, J. Idier, Bayesian blind separation of generalized hyperbolic process in noisy and underdetermined mixtures. IEEE Trans. Signal Process. 54(9), 3257–3269 (2006)

    Article  Google Scholar 

  38. K.T. Sweeney, H. Ayaz, T.E. Ward, M. Izzetoglu, S.F. Mcloone, B. Onaral, A methodology for validating artifact removal techniques for physiological signals. IEEE Trans. Inf. Technol. Biomed. 16(5), 918–926 (2012)

    Article  Google Scholar 

  39. P. Tichavsky, Z. Koldovsky, Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary source. IEEE Trans. Signal Process. 59(3), 1037–1047 (2011)

    Article  Google Scholar 

  40. E. Vincent, R. Gribonval, C. Fevotte, Performance measurement in blind audio source separation. IEEE Trans. Speech Audio Lang. Process. 14(4), 1462–1469 (2006)

    Article  Google Scholar 

  41. L. Wang, H.P. Ding, F.L. Yin, A region-growing permutation alignment approach in frequency-domain blind source separation of speech mixtures. IEEE Trans. Speech Audio Lang. Process. 19(3), 549–557 (2011)

    Article  Google Scholar 

  42. Y. Zhang, X. Shi, C.H. Chen, Gaussian mixture model-based Bayesian analysis for underdetermined blind source separation. Circuits Syst. Signal Process. 25(1), 81–94 (2006)

    Article  MATH  Google Scholar 

  43. H. Zhang, L. Li, W. Li, Independent component analysis based on fast proximal gradient. Circuits Syst. Signal Process. 31(2), 583–593 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Nature Science Foundation of China (Project No. 61374154), the Fundamental Research Funds for the Central Universities (DUT13JB08), and the Dalian Municipal Science and Technology Plan Project (2012C014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, S., Han, J. & Han, M. Nonnegative Mixture for Underdetermined Blind Source Separation Based on a Tensor Algorithm. Circuits Syst Signal Process 34, 2935–2950 (2015). https://doi.org/10.1007/s00034-015-9969-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-9969-8

Keywords

Navigation