Skip to main content
Log in

Design of Wideband Fractional-Order Differentiator Using Interlaced Sampling Method

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the design of a wideband digital fractional-order differentiator (FOD) is investigated. First, conventional FOD designs are reviewed, and the reconstruction formula of the interlaced sampling method is used to design the proposed wideband FOD by index substitution and the Grünwald–Letnikov fractional derivative. Because a closed-form window design is obtained, the filter coefficients are easily computed. Then, the weighted least squares and convex optimization methods are applied to design non-sparse digital FODs that are optimal in the least squares or min–max sense. Next, the iterative hard thresholding and orthogonal matching pursuit methods are used to design sparse digital FODs to reduce the implementation complexity. Finally, several numerical examples are presented to show that the proposed FODs have smaller design errors in the high-frequency band than conventional digital FODs that do not use the auxiliary interlaced sampling signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.S. Barbosa, J.A. Tenreiro Machado, M.F. Silva, Time domain design of fractional differintegrators using least-squares. Signal Process. 86, 2567–2581 (2006)

    Article  MATH  Google Scholar 

  2. T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Blumensath, M.E. Davies, Normalized iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Signal Process. 4(4), 298–309 (2010)

    Article  Google Scholar 

  4. T. Blumensath, Accelerated iterative hard thresholding. Signal Process. 92(3), 752–756 (2012)

    Article  Google Scholar 

  5. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  6. R.N. Bracewell, The Fourier Transform and Its Applications, 3rd edn. (McGraw-Hill, New York, 2000)

    MATH  Google Scholar 

  7. Y.Q. Chen, K.L. Moore, Discretization schemes for fractional-order differentiator and integrators. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  8. Y.Q. Chen, B.M. Vinagre, A new IIR-type digital fractional order differentiator. Signal Process. 83, 2359–2365 (2003)

    Article  MATH  Google Scholar 

  9. M.A. Davenport, M.B. Wakin, Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans. Inf. Theory 56(9), 4395–4401 (2010)

    Article  MathSciNet  Google Scholar 

  10. P.S.R. Diniz, E.A.B. da Silva, S.L. Netto, Digital Signal Processing: System Analysis and Design (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  11. Y.C. Eldar, G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  12. Y. Ferdi, Computation of fractional order derivative and integral via power series expansion and signal modelling. Nonlinear Dyn. 46, 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, http://cvxr.com/cvx/

  14. R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific, Singapore, 2011)

    Book  MATH  Google Scholar 

  15. H. Johansson, On FIR filter approximation of fractional-order differentiators and integrators. IEEE J. Emerg. Sel. Top. Circ. Syst. 3(3), 404–415 (2013)

    Article  Google Scholar 

  16. S. Kumar, K. Singh, R. Saxena, Closed-form analytical expression of fractional order differentiation in fractional Fourier transform. Circ. Syst. Signal Process. 32(4), 1875–1889 (2013)

    Article  MathSciNet  Google Scholar 

  17. F. Leulmi, Y. Ferdi, Improved digital rational approximation of the operator \(\text{ S }^{\alpha }\) using second-order s-to-z transform and signal modeling. Circ. Syst. Signal Process. 34(6), 1869–1891 (2014)

    Article  MathSciNet  Google Scholar 

  18. F. Marvasti, Nonuniform Sampling: Theory and Practice (Kluwer Academic, New York, 2001)

    Book  MATH  Google Scholar 

  19. C. Mekhnache, Y. Ferdi, Using new hybrid integrators to design IIR fractional-order integrators via impulse invariance method. Circ. Syst. Signal Process. 33(2), 643–653 (2014)

    Article  Google Scholar 

  20. M.D. Ortigueira, Fractional Calculus for Scientists and Engineers (Springer, Heidelberg, 2011)

    Book  MATH  Google Scholar 

  21. I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer, Heidelberg, 2011)

    Book  MATH  Google Scholar 

  22. Z. Ren, C. He, Q. Zhang, Fractional order total variation regularization for image super-resolution. Signal Process. 93, 2408–2421 (2013)

    Article  Google Scholar 

  23. J.J. Shyu, S.C. Pei, C.H. Chan, An iterative method for the design of variable fractional order FIR differintegrators. Signal Process. 89(3), 320–327 (2009)

    Article  MATH  Google Scholar 

  24. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. C.C. Tseng, S.L. Lee, Designs of fractional derivative constrained 1-D and 2-D FIR filters in the complex domain. Signal Process. 95, 111–125 (2014)

    Article  Google Scholar 

  26. C.C. Tseng, S.L. Lee, Closed-form design of fractional order digital differentiator using discrete cosine transform, in Proceedings of the IEEE international symposium on circuits and systems, (2013) pp. 2609–2612

  27. C.C. Tseng, Improved design of digital fractional-order differentiators using fractional sample delay. IEEE Trans. Circ. Syst. I: Regul. Pap. 53(1), 193–203 (2006)

    Article  Google Scholar 

  28. C.C. Tseng, S.L. Lee, Design of fractional order digital differentiator using radial basis function. IEEE Trans. Circ. Syst. I: Regul. Pap. 57(7), 1708–1718 (2010)

    Article  MathSciNet  Google Scholar 

  29. C.C. Tseng, S.L. Lee, Design of adjustable fractional order differentiator using expansion of ideal frequency response. Signal Process. 92(2), 498–508 (2012)

    Article  MathSciNet  Google Scholar 

  30. C.C. Tseng, Design of variable and adaptive fractional order differentiators. Signal Process. 86(10), 2554–2566 (2006)

    Article  MATH  Google Scholar 

  31. J. Wang, Y. Ye, X. Pan, X. Gao, C. Zhuang, Fractional zero-phase filtering based on the Riemann-Liouville integral. Signal Process. 98, 150–157 (2014)

    Article  Google Scholar 

  32. H. Zhang, Y. Shi, A.S. Mehr, Robust equalisation for inter symbol interference communication channels. IET Signal Process. 6(2), 73–78 (2012)

    Article  MathSciNet  Google Scholar 

  33. H. Zhang, J. Wang, State estimation of discrete-time Takagi-Sugeno fuzzy systems in a network environment. IEEE Trans. Cybern. 45(8), 1525–1536 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Cheng Tseng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, CC., Lee, SL. Design of Wideband Fractional-Order Differentiator Using Interlaced Sampling Method. Circuits Syst Signal Process 35, 2125–2154 (2016). https://doi.org/10.1007/s00034-016-0249-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0249-z

Keywords

Navigation