Skip to main content
Log in

A Filter Bank Mismatch Calibration Technique for Frequency-Interleaved ADCs

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The filter bank mismatch of analog analysis filters in frequency-interleaved ADCs (FI-ADCs) degrades the system’s spurious-free dynamic range (SFDR) significantly. In this paper, a calibration approach for compensating such mismatch is presented. By modeling the parameter mismatches in the analysis filters, the filter bank mismatch compensation is divided into a coarse trimming mode and a fine-tuning mode. After the coarse trimming mode by trimming the resistors and capacitors in analog domain, the fine-tuning mode by updating coefficients of synthesis filters is further carried out in digital domain to achieve high-precision calibration. A design example of 10 GS/s 8-bit four-channel FI-ADC is built in MATLAB. The simulation results show that 25-tap synthesis filters could satisfy the reconstruction requirement of 8-bit ADC. The proposed calibration technique improves the SFDR to 51 dB, compensating the filter mismatch effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.E. Chammas, B. Murmann, A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration. IEEE J. Solid State Circuits 46(4), 838–847 (2011)

    Article  Google Scholar 

  2. V.H.C. Chen, L. Pileggi, A 69.5 mW 20 GS/s 6b time-interleaved ADC with embedded time-to-digital calibration in 32 nm CMOS SOI. In IEEE ISSCC Digest of Technical Papers (2014), pp. 380–381

  3. N.L. Dortz, et al., A 1.62 GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70 dBFS. In IEEE ISSCC Digest of Technical Papers (2014), pp. 386–387

  4. J. Elbornsson, J.E. Eklund, Blind estimation of timing errors in interleaved AD converter. In Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing (2001), pp. 3913–3916

  5. S.K. Gupta, M.A. Inerfield, J. Wang, A 1-GS/s 11-bit ADC with 55-dB SNDR, 250-mW power realized by a high bandwidth scalable time-interleaved architecture. IEEE J. Solid State Circuits 41(12), 2650–2657 (2006)

    Article  Google Scholar 

  6. S. Huang, B.C. Levy, Blind estimation of timing offsets for four-channel time-interleaved ADCs. I Regular papers. IEEE Trans. Circuit Syst. 54(4), 863–876 (2007)

    Article  Google Scholar 

  7. W. Heinlein, W. Holmes, Active Filters for Integrated Circuits (Prentice Hall, Englewood Cliffs, 1974)

  8. C.C. Hsu, F.C. Huang, C.Y. Shih, C.C. Huang, Y.H. Lin, C.C. Lee, B. Razavi, An 11b 800MS/s time-interleaved ADC with digital background calibration. In IEEE ISSCC Digest of Technical Papers (2007), pp. 464–465

  9. C.C. Huang, C.Y. Wang, J.T. Wu, A CMOS 6-bit 16-GS/s time-interleaved ADC using digital background calibration techniques. IEEE J. Solid State Circuits 46(4), 848–858 (2011)

    Article  Google Scholar 

  10. S.M. Jamal, D. Fu, N.C-J Chang, P.J. Hurst, S.H. Lewis, A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration. IEEE J. Solid State Circuits 37(12), 1618–1627 (2002)

  11. E. Janssen, K. Doris, et al., An 11b 3.6GS/s time-interleaved SAR ADC in 65 nm CMOS. In IEEE ISSCC Digest of Technical Papers (2013), pp. 464–465

  12. S. Lee, A.P. Chandrakasan, H.S. Lee, A 1 GS/s 10 b 18.9 mW time-interleaved SAR ADC with background timing-skew calibration. In IEEE ISSCC Digest of Technical Papers (2014), pp. 384–385

  13. C.H. Law, P.J. Hurst, S.H. Lewis, A four-channel time-interleaved ADC with digital calibration of inter-channel timing and memory errors. IEEE J. Solid State Circuits 45, 2091–2103 (2010)

    Article  Google Scholar 

  14. S. Munkyo, M.J.W. Rodwell, U. Madhow, Comprehensive digital correction of mismatch errors for a 400-msamples/s 80-dB SFDR time-interleaved analog-to-digital converter. IEEE Trans. Microw. Theory Tech. 53, 1072–1082 (2005)

    Article  Google Scholar 

  15. D.G. Nairn, Time-interleaved analog-to-digital converters. In Proceedings IEEE Custom Integrated Circuits Conference (2008), pp. 289–296

  16. A. Petraglia, S.K. Mitra, High-speed A/D conversion incorporating a QMF bank. IEEE Trans. Instrum. Meas. 41, 427–431 (1992)

    Article  Google Scholar 

  17. B. Setterberg, K. Poulton, S. Ray, D.J. Huber, V. Abramzon, G. Steinbach, J.P. Keane, B. Wuppermann, M. Clayson, M. Martin, R. Pasha, E. Peeters, A. Jacobs, F. Demarsin, A. Al-Adnani, P. Brandt, A 14 b 2.5 GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction. In IEEE ISSCC Digest of Technical Papers (2013), pp. 466–467

  18. D. Stepanović, B. Nikolić, A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS. IEEE J. Solid State Circuits 48(4), 971–982 (2013)

    Article  Google Scholar 

  19. T.H. Tsai, P.J. Hurst, S.H. Lewis, Bandwidth mismatch and its correction in time-interleaved analog-to-digital converters. II. IEEE Trans. Circuits Syst. 53(10), 1133–1137 (2006)

    Article  Google Scholar 

  20. T.H. Tsai, P.J. Hurst, S.H. Lewis, Correction of mismatches in a time-interleaved analog-to-digital converter in an adaptively equalized digital communication receiver. I: regular papers. IEEE Trans. Circuits Syst. 56(2), 307–319 (2009)

    Article  MathSciNet  Google Scholar 

  21. P. Vaidyanathan, Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property. IEEE Trans. Acoust. Speech Signal Process. 35, 476–492 (1987)

    Article  MATH  Google Scholar 

  22. S.R. Velazquez, T.Q. Nguyen, S.R. Broadstone, Design of hybrid filter banks for analog/digital conversion. IEEE Trans. Signal Process. 46, 956–967 (1998)

    Article  Google Scholar 

  23. C.Y. Wang, A multiphase timing-skew calibration technique using zero-crossing detection. I: regular papers. IEEE Trans. Circuits Syst. 56(6), 1102–1114 (2009)

    Article  MathSciNet  Google Scholar 

  24. C.Y. Wang, J.-T. Wu, A background timing-skew calibration technique for time-interleaved analog-to-digital converters. II: express briefs. IEEE Trans. Circuits Syst. 53(4), 299–303 (2006)

    Article  Google Scholar 

  25. H. Wei, P. Zhang, B.D. Sahoo, B. Razavi, An 8 bit 4GS/s 120mW CMOS ADC. IEEE J. Solid State Circuits 47(11), 2763–2772 (2012)

    Article  Google Scholar 

  26. S.H. Zhao, S.C. Chan, Design and multiplierless realization of digital synthesis filters for hybrid-filter-bank A/D converters. I: regular papers. IEEE Trans. Circuit Syst. 56, 2221–2233 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Zheng, Y. & Siek, L. A Filter Bank Mismatch Calibration Technique for Frequency-Interleaved ADCs. Circuits Syst Signal Process 35, 3847–3862 (2016). https://doi.org/10.1007/s00034-016-0252-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0252-4

Keywords

Navigation