Skip to main content
Log in

Parameter Estimation of LFM Signals Based on Scaled Ambiguity Function

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A method based on the scaled ambiguity function for parameter estimation of LFM signals under noncooperative conditions is presented. In the proposed algorithm, the scaling principle is employed to remove the linear frequency migration brought by the coupling between the time variable and the lag variable. Afterward, the Fourier transform is performed for feature extraction of LFM signals on the centroid frequency versus chirp rate plane. The method avoids centroid frequency information loss, which is almost inevitable in the Radon-ambiguity transform. Furthermore, fractional lower-order statistics and the scaled ambiguity transform are combined to improve the performance in practical impulsive noise environments. Simulation results show that the fractional lower-order scaled ambiguity transform is robust for both Gaussian and impulsive noise, and it achieves significant performance improvement in a heavy noise environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Barbarossa, Analysis of multicomponent LFM signals by a combined Wigner–Hough transform. IEEE Trans. Signal Process. 43(6), 1511–1515 (1995)

    Article  Google Scholar 

  2. G. Bi, X. Li, C.M.S. See, LFM signal detection using LPP-Hough transform. Signal Process. 91(6), 1432–1443 (2011)

    Article  MATH  Google Scholar 

  3. V.G. Chavali, C.R.C.M. da Silva, Detection of digital amplitude-phase modulated signals in symmetric alpha-stable noise. IEEE Trans. Commun. 60(11), 3365–3375 (2012)

    Article  Google Scholar 

  4. B. Friedlander, J.M. Francos, Estimation of amplitude and phase parameters of multicomponent signals. IEEE Trans. Signal Process. 43(4), 917–926 (1995)

    Article  Google Scholar 

  5. J. Gau, Analysis of Low Probability of Intercept Radar Signals Using the Winger Distribution (Naval Postgraduate School, Monterey, 2002)

    Google Scholar 

  6. Y. Jin, H.B. Ji, Robust symbol rate estimation of PSK signals under the cyclostationary framework. Circuits Syst. Signal Process. 33(2), 599–612 (2014)

    Article  Google Scholar 

  7. X. Ma, Robust Signal Processing in Impulsive Noise With \(\alpha \) Stable Distributions: Estimation, Identification and Equalization (University of Southern California, USA, 1996)

  8. X. Ma, C.L. Nikias, Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics. IEEE Trans. Signal Process. 44(11), 2669–2687 (1996)

    Article  Google Scholar 

  9. P.R. Milne, P.E. Pace, Wigner distribution detection and analysis of FMCW and P-4 polyphase LPI waveforms, in IEEE ICASSP, Orlando, FL, vol. 4, pp. 3944–3947 (2002)

  10. C.L. Nikias, M. Shao, Signal Processing with Alpha Stable Distributions and Applications (Wiley, New York, 1995)

    Google Scholar 

  11. S. Qian, D. Chen, Q. Yin, Adaptive chirplet based signal approximation, in Proceedings of ICASSP, Seattle, WA, vol. 3, pp. 1781–1784 (1998)

  12. E. Sejdic, I. Djurovic, L. Stankovic, Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal Process. 91(6), 1351–1369 (2011)

    Article  MATH  Google Scholar 

  13. G.A. Tsihrintzis, U. Tureli, C.L. Nikias, Fractional lower-order statistics-based ambiguity functions for differential delay Doppler estimation, in IEE Proceedings of Radar Sonar Navigation, vol. 143(6), pp. 358–365 (1996)

  14. M. Wang, A. Chan, C. Chui, Linear frequency-modulated signal detection using Radon-ambiguity transform. IEEE Trans. Signal Process. 46(3), 571–586 (1998)

    Article  Google Scholar 

  15. X. Wang, F. Ding, Joint estimation of states and parameters for an input nonlinear state-space system with colored noise using the filtering technique. Circuits System Signal Processing (2016). doi:10.1007/s00034-015-0071-z

    MATH  Google Scholar 

  16. R. Wong, Asymptotic Approximations of Integrals (SIAM, Philadelphia, PA, 2001)

    Book  MATH  Google Scholar 

  17. M. Xing, Z. Bao, High resolution ISAR imaging of high speed moving targets, in IEE Proceedings of Radar Sonar Navigation, vol. 152(2), pp. 58–67 (2005)

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61201286), by the Natural Science Foundation of Shaanxi Province of China (2014JM8304) and by the Fundamental Research Funds for the Central Universities (K5051202013). The authors would like to thank the anonymous reviewers for their valuable comments in improving this paper. Our special thanks are given to one of them for the suggestion of surveying more related work in the literature, and those system estimation methods in [15] may become an important direction for our further study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Jin.

Appendix

Appendix

In the SAF, each signal component generates an auto term, and each pair of signal components generates a cross term. Cross terms in the SAF can be written as

$$\begin{aligned} \varGamma (R_{s_i s_j } )+\varGamma (R_{s_j s_i } )=2A_i A_j R_{s_i s_j }^{c1} \left( {t_n ,\tau } \right) \mathfrak {R}\left[ {R_{s_j s_i }^{c2} \left( {t_n ,\tau } \right) } \right] , \end{aligned}$$
(21)

with

$$\begin{aligned} R_{s_i s_j }^{c1} \left( {t_n ,\tau } \right) =\exp \left( {j\pi \left( {f_i +f_j } \right) \left( {\tau +1} \right) +j\pi \left( {r_i +r_j } \right) t_n } \right) , \end{aligned}$$
(22)

and

$$\begin{aligned}&R_{s_i s_j }^{c2} \left( {t_n ,\tau } \right) \nonumber \\&\quad =\exp \left( {j2\pi \left( {f_i -f_j } \right) \frac{t_n }{\tau +1}+j\pi \left( {r_i -r_j } \right) \left( {\frac{t_n }{\tau +1}} \right) ^{2}+j\pi \left( {r_i -r_j } \right) \left( {\frac{\tau +1}{2}} \right) ^{2}} \right) ,\nonumber \\ \end{aligned}$$
(23)

where \(\mathfrak {R}\left( \cdot \right) \) denotes the operation of taking real part, \(R_{s_i s_j }^{c1} \left( {t_n ,\tau } \right) \) and \(\mathfrak {R}\left[ {R_{s_j s_i }^{c2} \left( {t_n ,\tau } \right) } \right] \) represent the complex exponent and envelope, respectively. Let \(\Delta f_{ij} =\frac{f_i -f_j }{2}\), \(\nabla f_{ij} =\frac{f_i +f_j }{2}\), \(\widetilde{f}=f-\nabla f_{ij} \), \(\Delta r_{ij} =\frac{r_i -r_j }{2}\), \(\nabla r_{ij} =\frac{r_i +r_j }{2}\) and \(\widetilde{r}=r-\nabla r_{ij} \). Each cross term can be expressed as:

Case 1 For \(r_i =r_j \ne r\),

$$\begin{aligned} \Delta r_{ij} =0, \end{aligned}$$
(24)

then we obtain

$$\begin{aligned} \mathfrak {R}\left[ {R_{s_j s_i }^{c2} \left( {t_n ,\tau } \right) } \right] =\cos \left( {2\pi \left( {f_i -f_j } \right) \frac{t_n }{\tau +1}} \right) =\cos \left( {4\pi \Delta f_{ij} \frac{t_n }{\tau +1}} \right) . \end{aligned}$$
(25)

Equation (21) can be simplified as

$$\begin{aligned} \varGamma (R_{s_i s_j } )+\varGamma (R_{s_j s_i } )=2A_i A_j R_{s_i s_j }^{c1} \left( {t_n ,\tau } \right) \cos \left( {4\pi \Delta f_{ij} \frac{t_n }{\tau +1}} \right) . \end{aligned}$$
(26)

After applying the two-dimensional Fourier transform to \(2A_i A_j R_{s_i s_j }^{c1} \left( {t_n ,\tau } \right) \), we have

$$\begin{aligned} F_\tau \left[ {F_{t_n } \left( {2A_i A_j R_{s_i s_j }^{c1} \left( {t_n ,\tau } \right) } \right) } \right] =2A_i A_j \exp ( {j2\pi \nabla f_{ij} } )\delta ( {r-\nabla r_{ij} })\delta ( {f-\nabla f_{ij} }).\nonumber \\ \end{aligned}$$
(27)

Similarly, applying the two-dimensional Fourier transform to (25), we obtain

$$\begin{aligned}&F_\tau \left[ {F_{t_n } \left( {\cos \left( {4\pi \Delta f_{ij} \frac{t_n }{\tau +1}} \right) } \right) } \right] \nonumber \\&\quad =F_\tau \left[ {\frac{1}{2}\left( {\delta \left( {r+2\frac{\Delta f_{ij} }{\tau +1}} \right) +\delta \left( {r-2\frac{\Delta f_{ij} }{\tau +1}} \right) } \right) } \right] \nonumber \\&\quad =\left\{ {{\begin{array}{ll} {F_\tau \left[ {\frac{\Delta f_{ij} }{\widetilde{r}^{2}}\left( {\delta \left( {\tau +1+\frac{2\Delta f_{ij} }{\widetilde{r}}} \right) +\delta \left( {\tau +1-\frac{2\Delta f_{ij} }{\widetilde{r}}} \right) } \right) } \right] ,} &{}\quad {\hbox {for}\;\Delta f_{ij} \ne 0.} \\ {\delta \left( {\widetilde{f}} \right) \delta \left( {\widetilde{r}} \right) ,} &{}\quad {\hbox {for}\;\Delta f_{ij} =0}\\ \end{array} }} \right. \nonumber \\&\quad =\left\{ {{\begin{array}{ll} {\frac{2\Delta f_{ij} }{\widetilde{r}^{2}}\exp \left( {j2\pi \nabla f_{ij} } \right) \cos \left( {\frac{4\pi \Delta f_{ij} }{\widetilde{r}}\widetilde{f}} \right) ,} &{}\quad {\hbox {for}\;\Delta f_{ij} \ne 0} \\ {\delta \left( {\widetilde{f}} \right) \delta \left( {\widetilde{r}} \right) ,} &{}\quad {\hbox {for}\;\Delta f_{ij} =0} \\ \end{array} }} \right. \end{aligned}$$
(28)

Combining (27) with (28) and exploiting the two-dimensional convolution theorem, we can obtain that for \(r_i =r_j \ne r\) , \(\hbox {SAT}_{s_i s_j } \) in (9) is given by \(\hbox {SAT}_{s_i s_j } =4A_i A_j \frac{\Delta f_{ij} }{\widetilde{r}^{2}}\exp \left( {j2\pi \nabla f_{ij} } \right) \cos \left( {\frac{4\pi \Delta f_{ij} }{\widetilde{r}}\widetilde{f}} \right) \). And for \(r_i =r_j =r\), \(\hbox {SAT}_{s_i s_j } \) is simplified to meet \(\hbox {SAT}_{s_i s_j } =0\), that is, when \(\widetilde{r}=0\), the corresponding cross term turns out to be zero.

Case 2 \(r_i \ne r_j\) .

Since the Fourier transform of \(\mathfrak {R}\left[ {R_{s_j s_i }^{c^{2}} (t_n , \tau )} \right] \) with respect to \(t_n \) or \(\tau \) is an oscillatory integral and the amplitude of integrand is slowly varying as compared to the oscillations controlled by the phase terms, the principle of stationary phase in [16, Ch.2] can be used. Then, we have

$$\begin{aligned} t_n ^{{*}}=\left( {r-\frac{2\Delta f_{ij} }{\tau +1}} \right) \frac{\left( {\tau +1} \right) ^{2}}{2\Delta r_{ij} }, \end{aligned}$$
(29)

and

$$\begin{aligned} \frac{\mathrm{d}^{2}}{\mathrm{d}t_n ^{*2}}\left( {\hbox {phase}\left( {R_{{s_j} {s_i}}^{c2} \left( {t_n ^{{*}},\tau } \right) } \right) -2\pi rt_n ^{{*}}} \right) =\frac{4\pi \Delta r_{ij} }{\left( {\tau +1} \right) ^{2}}, \end{aligned}$$
(30)

where \(t_n ^{{*}}\) denotes the stationary point. Using (29) and (30), we obtain

$$\begin{aligned} \hbox {SAF}_{s_i s_j } \left( {\tau ,r} \right)= & {} F_{t_n } \left( {R_{s_j s_i }^{c2} \left( {t_n ,\tau } \right) } \right) \nonumber \\= & {} \frac{\left| {\tau +1} \right| }{\sqrt{2}\left| {\Delta r_{ij} } \right| ^{1/2}}\exp \left( {j\hbox {sgn}\left( {\Delta r_{ij} } \right) \frac{\pi }{4}} \right) \nonumber \\&\times \exp \left\{ {j\pi \left( {2\Delta f_{ij} \frac{\tau +1}{\Delta r_{ij} }r-\frac{\left( {\tau +1} \right) ^{2}}{2\Delta r_{ij} }r^{2}-\frac{2\Delta f_{ij} ^{2}}{\Delta r_{ij} }+\Delta r_{ij} \frac{\left( {\tau +1} \right) ^{2}}{2}} \right) } \right\} ,\nonumber \\ \end{aligned}$$
(31)

where \(\hbox {sgn}\left( \cdot \right) \) denotes the sign function.

Case 2-1 \(r=\pm \left| {\Delta r_{ij} } \right| \). Letting \({\tau }'=\tau +1\) and taking Fourier transform of \(\hbox {SAF}_{s_i s_j } \left( {{\tau }',r} \right) \) with respect to \({\tau }'\), we have

$$\begin{aligned} {S}'\left( {f,r} \right)= & {} F_{{\tau }'} \left( {\hbox {SAF}_{s_i s_j } \left( {{\tau }',r} \right) } \right) \nonumber \\= & {} -\frac{1}{\left| {\Delta r_{ij} } \right| ^{1/2}}\exp \left( {-j2\pi \frac{\Delta f_{ij} ^{2}}{\Delta r_{ij} }} \right) \exp \left( {j\hbox {sgn}\left( {\Delta r_{ij} } \right) \frac{\pi }{4}} \right) \frac{1}{2\sqrt{2}\pi ^{2}\left( {f-\frac{\Delta f_{ij} }{\Delta r_{ij} }r} \right) ^{2}}.\nonumber \\ \end{aligned}$$
(32)

According to the conjugation property of the Fourier transform, we obtain

$$\begin{aligned} F_\tau \left[ {F_{t_n } \left( {\mathfrak {R}\left[ {R_{s_j s_i }^{c2} \left( {t_n ,\tau } \right) } \right] } \right) } \right] =\frac{1}{2}\left( {{S}'\left( {f,r} \right) +{S}'^{{*}}\left( {-f,-r} \right) } \right) , \end{aligned}$$
(33)

where \({*}\) Denotes complex conjugation as in (2). Combining (33) with (27), we have

$$\begin{aligned}&F_\tau \left[ {F_{t_n } \left( {2R_{s_i s_j }^{c1} \left( {t_n ,\tau } \right) \mathfrak {R}\left[ {R_{s_j s_i }^{c2} \left( {t_n ,\tau } \right) } \right] } \right) } \right] \nonumber \\&\qquad ={S}'\left( {f-\nabla f_{ij} ,r-\nabla r_{ij} } \right) +{S}'^{{*}}\left( {f-\nabla f_{ij} ,r-\nabla r_{ij} } \right) \end{aligned}$$
(34)

Inserting (32) into (34) and applying the translation and scaling properties to (34), it can be obtained that \(\hbox {SAT}_{s_i s_j } \) in (9) is given by

$$\begin{aligned} \hbox {SAT}_{s_i s_j }= & {} -\frac{A_i A_i }{\left| {\Delta r_{ij} } \right| ^{1/2}}\cos \left( {\hbox {sgn}\left( {\Delta r_{ij} } \right) \frac{\pi }{4}-2\pi \frac{\Delta f_{ij} ^{2}}{\Delta r_{ij} }} \right) \\&\times \frac{\exp \left( {j2\pi \nabla f_{ij} } \right) }{\sqrt{2}\pi ^{2}\left( {\widetilde{f}-\frac{\Delta f_{ij} }{\Delta r_{ij} }\left( {\pm \left| {\Delta r_{ij} } \right| -\nabla r_{ij} } \right) } \right) ^{2}}. \end{aligned}$$

Case 2-2 \(r\ne \pm \left| {\Delta r_{ij} } \right| \). Similarly, the stationary point can be expressed as

$$\begin{aligned} {\tau }'^{{*}}=\frac{2\Delta r_{ij} f-2\Delta f_{ij} r}{\Delta r_{ij}^2 -r^{2}}, \end{aligned}$$
(35)

and

$$\begin{aligned} \frac{\mathrm{d}^{2}}{\mathrm{d}{\tau }'^{2}}( {\hbox {phase}( {\hbox {SAF}_{s_i s_j } ( {{\tau }',r} )} )-2\pi f{\tau }'})=\pi \Delta r_{ij} -\pi \frac{r^{2}}{\Delta r_{ij} }. \end{aligned}$$
(36)

Using (35) and (36), the Fourier transform of \(\hbox {SAF}_{s_i s_j } \left( {{\tau }',r} \right) \) with respect to \({\tau }'\) can be written as

$$\begin{aligned}&{S}'\left( {f,r} \right) \nonumber \\&\quad =F_{{\tau }'} \left( {\hbox {SAF}_{s_i s_j } \left( {{\tau }',r} \right) } \right) \nonumber \\&\quad =\frac{2\left| {\Delta r_{ij} f-\Delta f_{ij} r} \right| }{\left| {r^{2}-\Delta r_{ij}^2 } \right| ^{3/2}}\exp \left( {j\frac{\pi }{4}\hbox {sgn}\left( {\Delta r_{ij} } \right) \left( {1+\hbox {sgn}\left( {\Delta r_{ij}^2 -r^{2}} \right) } \right) } \right) \nonumber \\&\qquad \exp \left\{ {-j\pi \frac{2\Delta r_{ij} }{\Delta r_{ij}^2 -r^{2}}\left( {f-\Delta f_{ij} \frac{r}{\Delta r_{ij} }} \right) ^{2}-j2\pi \frac{\Delta f_{ij}^2 }{\Delta r_{ij} }} \right\} . \end{aligned}$$
(37)

Substituting (37) in (34) and applying the translation and scaling principles to (34), we can obtain that \(\hbox {SAT}_{s_i s_j } \) in (9) is given by

$$\begin{aligned} \hbox {SAT}_{s_i s_j }= & {} 4A_i A_j \exp \left( {j2\pi \nabla f_{ij} } \right) \nonumber \\&\times \frac{\left| {\Delta r_{ij} \widetilde{f}-\Delta f_{ij} \widetilde{r}} \right| }{\left| {\widetilde{r}^{2}-\Delta r_{ij} ^{2}} \right| ^{3/2}}\cos \left[ {\left( {\frac{\pi }{4}\hbox {sgn}\left( {\Delta r_{ij} } \right) \left( {1+\hbox {sgn}\left( {\Delta r_{ij}^2 -r^{2}} \right) } \right) } \right) } \right. \nonumber \\&\left. {-\frac{2\pi \Delta r_{ij} }{\Delta r_{ij}^2 -r^{2}}\left( {\widetilde{f}-\Delta f_{ij} \frac{\widetilde{r}}{\Delta r_{ij} }} \right) ^{2}-2\pi \frac{\Delta f_{ij}^2 }{\Delta r_{ij} }} \right] . \end{aligned}$$
(38)

As shown in (38), when \(\widetilde{r}=\pm \left| {\Delta r_{ij} } \right| \), \(\hbox {SAT}_{s_i s_j } =0\), that is, the cross term located at the center point of two auto terms is eliminated, which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Duan, P. & Ji, H. Parameter Estimation of LFM Signals Based on Scaled Ambiguity Function. Circuits Syst Signal Process 35, 4445–4462 (2016). https://doi.org/10.1007/s00034-016-0280-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0280-0

Keywords

Navigation