Skip to main content
Log in

Single Flip-Flop Driving Circuit for Glitch-Free NAND-Based Digitally Controlled Delay-Lines

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

NAND-based digitally controlled delay-lines (DCDLs) are employed in several applications owing to their excellent linearity, good resolution and easy standard cell design. A glitch-free DCDL behavior is often a strict requirement [e.g. spread-spectrum clock generators (SSCG) and digitally controlled oscillators]. Existing glitch-free NAND-based DCDL topologies either require two flip-flops for each DCDL delay-element (DE) or present a very long settling time which limits the maximum working frequency. This paper proposes a novel glitch-free NAND-based DCDL that joins the advantages of previously proposed topologies: uses only a single flip-flop for each DE (reducing area and power) and has relaxed timing requirements (allowing easy integration in applications like SSCG). In the paper, the glitch-free operation of the proposed circuit is firstly demonstrated theoretically and then verified experimentally, with the help of an SSCG built using proposed DCDL and implemented in 28 nm CMOS. Simulation results show that proposed DCDL results in a more that 30 % reduction of the power dissipation and a >20 % reduction in area occupation with respect to double flip-flop DCDL, without any timing constraints penalty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.L. Chen, C.C. Chung, C.Y. Lee, A portable digitally controlled oscillator using novel varactors. IEEE Trans. Circuits Syst. II Exp. Briefs 52(5), 233–237 (2005)

    Article  Google Scholar 

  2. P.L. Chen, C.C. Chung, J.N. Yang, C.Y. Lee, A clock generator with cascaded dynamic frequency counting loops for wide multiplication range applications. IEEE J. Solid State Circuits 41(6), 1275–1285 (2006)

    Article  Google Scholar 

  3. S.L. Chen, M.J. Ho, Y.M. Sun, M.W. Lin, J.C. Lai, An all-digital delay-locked loop for high-speed memory interface applications, in International symposium on VLSI design, automation and test (VLSI-DAT), 2014

  4. K.H. Choi, J.B. Shin, J.Y. Sim, H.J. Park, An interpolating digitally controlled oscillator for a wide range all digital PLL. IEEE Trans. Circuits Syst. I: Reg. Pap. 56(9), 2055–2063 (2009)

    Article  MathSciNet  Google Scholar 

  5. C.C. Chung, C.Y. Lee, An all digital phase locked loop for high speed clock generation. IEEE J. Solid State Circuits 38(2), 347–351 (2003)

    Article  Google Scholar 

  6. S. Damphousse, K. Ouici, A. Rizki, M. Mallinson, All digital spread spectrum clock generator for EMI reduction. IEEE J. Solid State Circuits 42(1), 145–150 (2007)

    Article  Google Scholar 

  7. R. Danesfahani, M. Moghaddasi, M. Mahlouji, Enhanced acquisition and tracking in all digital phase locked loops. Circuits Syst. Signal Process. 27(4), 537–552 (2008)

    Article  MATH  Google Scholar 

  8. D. De Caro, C.A. Romani, N. Petra, A.G.M. Strollo, C. Parrella, A 1.27 GHz, all digital spread spectrum clock generator/synthesizer in 65 nm CMOS. IEEE J. Solid State Circuits 45(5), 1048–1060 (2010)

    Article  Google Scholar 

  9. D. De Caro, Glitch-free NAND-based digitally controlled delay-lines. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 55–66 (2013)

    Article  MathSciNet  Google Scholar 

  10. D. De Caro, F. Tessitore, G. Vai, N. Imperato, N. Petra, E. Napoli, C. Parrella, A.G.M. Strollo, A 3.3 GHz spread-spectrum clock generator supporting discontinuous frequency modulations in 28 nm CMOS. IEEE J. Solid State Circuits 50(9), 2074–2089 (2015). doi:10.1109/JSSC.2015.2423977

    Article  Google Scholar 

  11. S. Kao, B. Chen, S. Liu, A 62.5–625-MHz anti reset all digital delay locked loop. IEEE Trans. Circuits Syst. II Exp. Briefs 54(7), 566–570 (2007)

    Article  Google Scholar 

  12. T. Kim, S.H. Wang, B. Kim, Fast locking delay locked loop using initial delay measurement. Electron. Lett. 38(17), 950–951 (2002)

    Article  Google Scholar 

  13. Y. Lee, I.C. Park, Single-step glitch-free NAND-based digitally controlled delay lines using dual loops. Electron. Lett. 50(13), 930–932 (2014)

    Article  Google Scholar 

  14. F. Lin, J. Miller, A. Schoenfeld, M. Ma, R.J. Baker, A register controlled symmetrical DLL for double-data-rate DRAM. IEEE J. Solid State Circuits 34(4), 565–568 (1999)

    Article  Google Scholar 

  15. T. Matano et al., A 1-Gb/s/pin 512-Mb DDRII SDRAM using a digital DLL and a Slew-rate-controlled output buffer. IEEE J. Solid State Circuits 38(5), 762–768 (2003)

    Article  Google Scholar 

  16. B.M. Moon, Y.J. Park, D.K. Jeong, Monotonic wide-range digitally controlled oscillator compensated for supply voltage variation. IEEE Trans. Circuits Syst. II Exp. Briefs 55(10), 1036–1040 (2008)

    Article  Google Scholar 

  17. H.Y. Shih, C.F. Chen, Y.C. Chang, Y.W. Hu, An ultralow power multirate FSK demodulator with digital-assisted calibrated delay-line based phase shifter for high-speed biomedical zero-IF receivers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(1), 98–106 (2015)

    Article  Google Scholar 

  18. R.B. Staszewski, P.T. Balsara, All Digital Frequency Synthesizer in Deep Submicron CMOS (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  19. T. Terada, S. Yoshizumi, M. Muqsith, Y. Sanada, T. Kuroda, A CMOS ultra-wideband impulse radio transceiver for 1-Mb/s data communications and 2.5-cm range finding. IEEE J. Solid State Circuits 41(4), 891 898 (2006)

    Article  Google Scholar 

  20. J.A. Tierno, A.V. Rylyakov, D.J. Friedman, A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI. IEEE J. Solid State Circuits 43(1), 42–51 (2008)

    Article  Google Scholar 

  21. N. Van Helleputte, M. Verhelst, W. Dehaene, G. Gielen, A reconfigurable, 130 nm CMOS 108 pJ/pulse, fully integrated IR-UWB receiver for communication and precise ranging. IEEE J. Solid State Circuits 45(1), 69 83 (2010)

    Google Scholar 

  22. J.S. Wang, C.Y. Cheng, J.C. Liu, Y.C. Liu, Y.M. Wang, A duty cycle distortion tolerant half delay line low-power fast lock in all digital delay locked loop. IEEE J. Solid State Circuits 45(5), 1036–1047 (2010)

    Article  Google Scholar 

  23. L. Wang, L. Liu, H. Chen, An implementation of fast-locking and wide-range 11-bit reversible SAR DLL. IEEE Trans. Circuits Syst. II: Express Briefs 57(6), 421–425 (2010)

    Article  Google Scholar 

  24. R.J. Yang, S.I. Liu, A 40–550 MHz harmonic-free all digital delay locked loop using a variable SAR algorithm. IEEE J. Solid State Circuits 42(2), 361–373 (2007)

    Article  Google Scholar 

  25. R.J. Yang, S.I. Liu, A 2.5 GHz all digital delay locked loop in 0.13 \(\mu \)m CMOS technology. IEEE J. Solid State Circuits 42(11), 2338–2347 (2007)

    Article  Google Scholar 

  26. C.Y. Yao, Y.H. Ho, Y.Y. Chiu, R.J. Yang, Designing a SAR-based all-digital delay-locked loop with constant acquisition cycles using a resettable delay line. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(3), 567–574 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide De Caro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Caro, D., Tessitore, F., Vai, G. et al. Single Flip-Flop Driving Circuit for Glitch-Free NAND-Based Digitally Controlled Delay-Lines. Circuits Syst Signal Process 36, 1341–1360 (2017). https://doi.org/10.1007/s00034-016-0369-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0369-5

Keywords

Navigation