Skip to main content
Log in

A Low-Complexity Modulation Classification Algorithm for MIMO–OSTBC System

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a low-complexity modulation classification algorithm is proposed for the multiple-input multiple-output orthogonal space–time block code (MIMO–OSTBC) system. First, MIMO–OSTBC system is decoupled into several single-input single- output (SISO) systems by utilizing the orthogonal property of OSTBC. Then, these SISO systems are grouped into several two-input two- output systems. Finally, a maximum likelihood- based approach is used to classify the modulation. Both the cases of perfect and unknown channel state information (CSI) are considered. Simulations show that the proposed algorithm exhibits significantly lower complexity than conventional algorithm in both cases. Meanwhile, it provides better performance than conventional algorithm in the case of unknown CSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. Choqueuse, S. Azou, K. Yao et al., Blind modulation recognition for MIMO systems. MTA Rev. 19(2), 183–196 (2009)

    Google Scholar 

  2. V. Choqueuse, A. Mansour, G. Burel et al., Blind channel estimation for STBC systems using higher-order statistics. IEEE Trans. Wirel. Commun. 10(2), 495–505 (2011)

    Article  Google Scholar 

  3. K. Hassan, I. Dayoub, W. Hamouda et al., Blind digital modulation identification for spatially-correlated MIMO systems. IEEE Trans. Wirel. Commun. 11(2), 683–693 (2012)

    Article  Google Scholar 

  4. S. Kharbech, I. Dayoub, M. Zwingelstein-Colin et al., On classifiers for blind feature-based automatic modulation classification over MIMO channels. IET Commun. 10(7), 790–795 (2016)

    Article  Google Scholar 

  5. E.G. Larsson, P. Stoica, Space–Time Block Coding for Wireless Communications (Cambridge University Press, New York, 2008)

    MATH  Google Scholar 

  6. M. Luo, L. Li, G. Qian, J. Lu, A blind modulation identification algorithm for STBC systems using multidimensional ICA. Concurr. Comput. Pract. Exp. 26(8), 1490–1505 (2014)

    Article  Google Scholar 

  7. M. Marey, O.A. Dobre, Blind modulation classification algorithm for single and multiple-antenna systems over frequency-selective channels. IEEE Signal Process. 21(9), 1098–1102 (2014)

    Article  Google Scholar 

  8. M. Moeneclaey, G. De Jonghe, ML-oriented NDA carrier synchronization for general rotationally symmetric signal constellations. IEEE Trans. Commun. 42(8), 2531–2533 (1994)

    Article  Google Scholar 

  9. M. Muhlhaus, M. Oner, O.A. Dobre et al., A low complexity modulation classification algorithm for MIMO systems. IEEE Commun. Lett. 17(10), 1881–1884 (2013)

    Article  Google Scholar 

  10. G. Qian, L. Li, M. Luo, On the blind channel identifiability of MIMO–STBC systems using noncircular complex FastICA algorithm. Circuits, Syst. Signal Process. 33(6), 1859–1881 (2014)

    Google Scholar 

  11. S. Shahbazpanahi, A.B. Gershman, J.H. Manton, Closed-form blind MIMO channel estimation for orthogonal space–time block codes. IEEE Trans. Signal Process. 53(12), 4506–4517 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work and the contribution were supported by the Fundamental Research Funds for the Central Universities (Grants XDJK2016C138 and SWU116013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobing Qian.

Appendix: The Proof for the Insensitivity of LF

Appendix: The Proof for the Insensitivity of LF

Based on (15), we can obtain

$$\begin{aligned}&{\left[ {{\begin{array}{cc} {\mathbf{I}_n }&{} {j\mathbf{I}_n } \\ \end{array} }} \right] \,\mathbf{A}^{\mathrm{T}} \left( \hat{\mathbf{h}}\right) \mathbf{y}}/{\left\| {{\hat{\mathbf{h}}}} \right\| ^{2}} \nonumber \\&\quad ={\mathbf{DP}\left[ {{\begin{array}{cc} {\mathbf{I}_n }&{} {j\mathbf{I}_n } \\ \end{array} }} \right] \,\mathbf{A}^{\mathrm{T}}\mathbf{(h)y}}/{\left\| \mathbf{h} \right\| ^{2}} \nonumber \\&\quad ={\left[ {{\begin{array}{cc} {\mathbf{I}_n }&{} {j\mathbf{I}_n } \\ \end{array} }} \right] \left[ {{\begin{array}{c@{\quad }c} {\mathfrak {R}e\left( {\hat{\mathbf{D}}} {\hat{\mathbf{D}}}_q \right) \mathbf{P}}&{} {-\mathfrak {I}m\left( \hat{\mathbf{D}} {\hat{\mathbf{D}}}_q \right) \mathbf{P}} \\ {\mathfrak {I}m\left( {\hat{\mathbf{D}}} {\hat{\mathbf{D}}}_q \right) \mathbf{P}}&{} {\mathfrak {R}e\left( {\hat{\mathbf{D}}} {\hat{\mathbf{D}}_q } \right) \mathbf{P}} \\ \end{array} }} \right] \mathbf{A}^{\mathrm{T}}{} \mathbf{(h)y}}/{\left\| \mathbf{h} \right\| ^{2}} \end{aligned}$$
(20)

Then,

$$\begin{aligned} \mathbf{A(h)}={\mathbf{A}\left( \hat{\mathbf{h}}\right) }\left[ {{ \begin{array}{c@{\quad }c} {\left\{ {\mathfrak {R}e\left( {{\hat{\mathbf{D}}\hat{\mathbf{D}}}_q } \right) \mathbf{P}} \right\} ^{\mathrm{T}}}&{} {\left\{ {\mathfrak {I}m\left( {{\hat{\mathbf{D}}\hat{{\mathbf{D}}}}_q } \right) \mathbf{P}} \right\} ^{\mathrm{T}}} \\ {-\left\{ {\mathfrak {I}m\left( {{\hat{\mathbf{D}}\hat{{\mathbf{D}}}}_q } \right) \mathbf{P}} \right\} ^{\mathrm{T}}}&{} {\left\{ {\mathfrak {R}e\left( {{\hat{\mathbf{D}}\hat{{\mathbf{D}}}}_q } \right) \mathbf{P}} \right\} ^{\mathrm{T}}} \\ \end{array} }} \right] ^{-1} \end{aligned}$$
(21)

Therefore,

$$\begin{aligned} {\tilde{\tilde{\mathbf{y}}}}(v)= & {} \mathbf{A}^{\mathrm{T}}{\left( \hat{\mathbf{h}}\right) }{} \mathbf{y}(v)/{\left\| {\hat{\mathbf{h}}} \right\| }^{2}\nonumber \\= & {} \left[ {{\begin{array}{c@{\quad }c} {\mathfrak {R}e\left( {{\hat{\mathbf{D}}\hat{{\mathbf{D}}}}_q } \right) \mathbf{P}}&{} {-\mathfrak {I}m\left( {{\hat{\mathbf{D}}\hat{{\mathbf{D}}}}_q } \right) \mathbf{P}} \\ {\mathfrak {I}m\left( {{\hat{\mathbf{D}}\hat{{\mathbf{D}}}}_q } \right) \mathbf{P}}&{} {\mathfrak {R}e\left( {{\hat{\mathbf{D}}\hat{{\mathbf{D}}}}_q } \right) \mathbf{P}} \\ \end{array} }} \right] {\tilde{\mathbf{y}}}(v) \end{aligned}$$
(22)

where \(\left\| {{\hat{\mathbf{h}}}} \right\| =\left\| \mathbf{h} \right\| =\sqrt{\hbox {tr}\left\{ {{\left[ {E\left( {\mathbf{YY}^{\mathrm{H}}-l\sigma ^{2}{} \mathbf{I}_{n_r } } \right) } \right] }/n} \right\} }\).

Next, we will prove that

$$\begin{aligned}&\sum _{v=1}^{N_b } {\sum _{u=1}^n {\log } \left\{ {\Lambda \left( {\left[ {\tilde{y}_u (v),\tilde{y}_{u+n} (v)} \right] |{\mathcal {M}}, \mathbf{H},\tilde{\sigma }^{2}} \right) } \right\} }\nonumber \\&\quad =\sum _{v=1}^{N_b } {\sum _{u=1}^n {\log } \left\{ {\Lambda \left( {\left[ {\tilde{\tilde{y}}_u (v),\tilde{\tilde{y}}_{u+n} (v)} \right] |{\mathcal {M}}, {\hat{\mathbf{H}}},{\hat{\mathbf{D}}},\tilde{\tilde{\sigma }}^{2}} \right) } \right\} } \end{aligned}$$
(23)

Proof

Due to \(\begin{array}{l} \sum _{v=1}^{N_b } {\log \left\{ {\Lambda \left[ {{\tilde{\mathbf{y}}}(v)|\Theta , \mathbf{H}} \right] } \right\} } \\ =\sum _{v=1}^{N_b } {\log \left\{ {\Lambda \left[ {\left[ {{\begin{array}{c@{\quad }c} \mathbf{P}&{} \mathbf{P} \\ \mathbf{P}&{} \mathbf{P} \\ \end{array} }} \right] {\tilde{\mathbf{y}}}(v)|\Theta , \mathbf{H}} \right] } \right\} } \\ \end{array}\), the ambiguity resulted from \(\mathbf{P}\) can be neglected.

Moreover,

$$\begin{aligned}&\sum _{u=1}^n {\log \left( {\sum _{s_u (v)\in {\mathcal {M}}} {\exp \left[ \frac{-\left| {\hbox {e}^{-j\hat{{\theta }}_u }\left( {\tilde{\tilde{y}}_u (v)+j\tilde{\tilde{y}}_{u+n} (v)} \right) -s_u (v)} \right| ^{2} }{\sigma ^{2}/ \left\| {\hat{\mathbf{h}}} \right\| ^{2}} \right] } } \right) } \nonumber \\&\quad =\sum _{u=1}^n \log \left( \sum _{s_u (v)\in {\mathcal {M}}} \exp \left[ \frac{-\left| {\hbox {e}^{j2\pi \rho _u /q}\left( {\tilde{y}_u (v)+j\tilde{y}_{u+n} (v)} \right) -s_u (v)} \right| ^2 }{{\sigma ^{2}}/{\left\| {{\hat{\mathbf{h}}}} \right\| ^{2}}} \right] \right) \nonumber \\&\quad =\sum _{u=1}^n {\log \left( {\sum _{s_u (v)\in {\mathcal {M}}} {\exp \left[ {\frac{-\left| {\left( {\tilde{y}_u (v)+j\tilde{y}_{u+n} (v)} \right) -\hbox {e}^{-j2\pi \rho _u /q}s_u (v)} \right| ^2 }{{\sigma ^{2}}/{\left\| \mathbf{h} \right\| ^{2}}}} \right] } } \right) } \nonumber \\&\quad =\sum _{u=1}^n {\log \left( {\sum _{s_u (v)\in {\mathcal {M}}} {\exp \left[ {\frac{-\left| {\left( {\tilde{y}_u (v)+j\tilde{y}_{u+n} (v)} \right) -s_u (v)} \right| ^2 }{{\sigma ^{2}}/{\left\| \mathbf{h} \right\| ^{2}}}} \right] } } \right) } \end{aligned}$$
(24)

Then, (23) is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, G., Wei, P., Ruan, Z. et al. A Low-Complexity Modulation Classification Algorithm for MIMO–OSTBC System. Circuits Syst Signal Process 36, 2622–2634 (2017). https://doi.org/10.1007/s00034-016-0428-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0428-y

Keywords

Navigation