Skip to main content
Log in

High-Dynamic-Range Image Generation and Coding for Multi-exposure Multi-view Images

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

High-dynamic-range (HDR) images offer better visual quality that is much closer to reality by allowing a wider range of luminance. Because of the rarity of devices that directly capture/display scenes in HDR format, HDR images are usually generated using several low-dynamic-range (LDR) images with various exposure settings and then displayed on the conventional display, after tone mapping. This paper proposes HDR generation for multi-view images considering the need to provide the user with an expanded visual experience, not only in terms of a wider field of view (FOV), but also with a greater dynamic range. This novel technique generates HDR multi-view images in an efficient way, and only NLDR images are needed to render HDR images in N views. Furthermore, to efficiently transmit the multi-view image with various exposure, two coding architectures are proposed. The experimental results show that the proposed schemes are capable of achieving 39.5 % bitrate savings and give a rendered HDR image with greatly improved quality, compared to a conventional multi-view coding scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. T.Q. Aydm, R. Mantiuk, H.-P. Seidel, Extending quality metrics to full luminance range images. in Proceedings of SPIE 6806, Human Vision and Electronic Imaging XIII, 68060B (2008)

  2. S. Battiato, A. Castorina, M. Mancuso, High dynamic range imaging for digital still camera: an overview. J. Electron. Imaging 12(3), 459–469 (2003)

    Article  Google Scholar 

  3. H. Bay, A. Ess, T. Tuytelaars, L.V. Gool, Speeded up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  4. G. Bjontegaard, Calculation of average PSNR differences between RD-curves. in 13th VCEG-M33 Meeting (Austin, TX, 2001)

  5. B. Bross, W.-J. Han, G. J. Sullivan, J.-R. Ohm, T. Wiegand, High efficiency video coding (HEVC) text specification draft 9. in JCTVC-K1003, ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) (2012)

  6. Y. Chen, Y.-K. Wang, K. Ugur, M.M. Hannuksela, J. Lainema, M. Gabbouj, The emerging MVC standard for 3D video service. EURASIP J. Adv. Signal Process. 2009 (2008). doi:10.1155/2009/786015

  7. P.E. Debevec, J. Malik, Recovering high dynamic range radiance maps from photographs. in Proceedings of ACM SIGGRAPH (1997) pp. 369–378

  8. C. Dorin, P. Meer, ‘Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  9. R. Fattal, D. Lischinski, M. Werman, Gradient domain high dynamic range compression. ACM Trans. Gr. 21(3), 249–256 (2002)

    Article  Google Scholar 

  10. P.F. Felzenszwalb, D.P. Huttenlocher, Efficient belief propagation for early vision. in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004), pp. 261–268

  11. M. Granados, B. Ajdin, M. Wand, C. Theobalt, Optimal HDR reconstruction with linear digital cameras. in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010), pp. 215–222

  12. M.D. Grossberg, S.K. Nayar, Determine the camera response from images: what is knowable? IEEE Trans. Patter Anal. Mach. Intell. 25(11), 1455–1467 (2003)

    Article  Google Scholar 

  13. http://vision.middlebury.edu/stereo/data/scenes2005/

  14. ISO/IEC MPEG & ITU-T VCEG JVT-AE207 Draft reference software for MVC (ISO and ITU, 2009)

  15. S.B. Kang, M. Uyttendaele, S. Winder, R. Szeliski, High dynamic range video. ACM Trans. Gr. 22(3), 319–325 (2003)

    Article  Google Scholar 

  16. H.-Y. Lin, W.-Z. Chang, High dynamic range imaging for stereoscopic scene representation. in Proceedings of IEEE International Conference on Image Processing (2009), pp. 4305–4308

  17. D.G. Lowe, Distinctive image features from scale-invariant keypoints. Proc. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  18. K. Ma, H. Yeganeh, K. Zeng, Z. Wang, High dynamic range image compression by optimizing tone mapped image quality index. IEEE Trans. Image Process. 24(10), 3086–3097 (2015)

    Article  MathSciNet  Google Scholar 

  19. T. Mertens, J. Kautz, F. Van Reeth, Exposure fusion. in Proceedings of Pacific Conference on Computer Graphics and Applications (2007), pp. 382–390

  20. V. Popovic, K. Seyid, E. Pignat, Ö. Çogal, Y. Leblebici, Multi-camera platform for panoramic real-time HDR video construction and rendering. J. Real-Time Image Process. (2014). doi:10.1007/s11554-014-0444-8

  21. V. Ramachandra, M. Zwicker, T. Nguyen, HDR imaging from differently exposed multiview videos. in Proceedings of IEEE 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (2008), pp. 85–88

  22. E. Reinhard, S. Pattanaik, G. Ward, P. Debevec, High dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Morgan Kaufmann Publisher, San Francisco, 2006)

    Google Scholar 

  23. E. Reinhard, M. Stark, P. Shirley, J. Ferwerda, Photographic tone reproduction for digital images. ACM Trans. Gr. 21(3), 267–276 (2002)

    Article  Google Scholar 

  24. R. Shen, I. Cheng, J. Shi, A. Basu, Generalized random walks for fusion of multi-exposure images. IEEE Trans. Image Process. 20(12), 3634–3646 (2011)

    Article  MathSciNet  Google Scholar 

  25. M. Song, D. Tao, C. Chen, J. Bu, C. Zhang, Probabilistic exposure fusion. IEEE Trans. Image Process. 21(1), 341–357 (2012)

    Article  MathSciNet  Google Scholar 

  26. N. Sun, H. Mansour, R. Warb, HDR image construction from multi-exposed stereo LDR images. in Proceedings of IEEE International Conference on Image Processing (ICIP) (2010), pp. 2973–2976

  27. G. Tech, K. Wegner, Y. Chen, M. M. Hannuksela, J. Boyce, MV-HEVC draft text 9. in JCT-3V Doc., JCT3V-I1002 (Sapporo, Japan, 2014)

  28. A. Troccoli, S.B. Kang, S. Seitz, Multi-view multi-exposure stereo. in Proceedings of International Symposium on 3D Data Processing, Visualization, and Transmission (2006), pp. 861–868

  29. A. Vavilin, K.-H. Jo, Fast HDR image generation from multi-exposed multiple-view LDR images. in textitProceedings of European Workshop on Visual Information Processing (EUVIP) (2011), pp. 105–110

  30. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  31. W. Zhang, W.-K. Cham, Gradient-directed multi-exposure composition. IEEE Trans. Image Process. 21(4), 2318–2323 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Chiu Chiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, JC., Kao, PH., Chen, YS. et al. High-Dynamic-Range Image Generation and Coding for Multi-exposure Multi-view Images. Circuits Syst Signal Process 36, 2786–2814 (2017). https://doi.org/10.1007/s00034-016-0437-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0437-x

Keywords

Navigation