Skip to main content
Log in

Direct Position Determination of Multiple Noncircular Sources with a Moving Array

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Compared with conventional two-step localization methods, direct position determination (DPD) is a promising technique that offers superior performance under low signal-to-noise ratio conditions. However, existing DPD methods mainly focus on complex circular sources without considering noncircular signals, which can be exploited to enhance the localization accuracy. This study proposes an improved subspace data fusion (SDF)-based DPD algorithm for multiple noncircular sources with a moving array. By constructing and decomposing the extended covariance matrices, extended noise subspaces are obtained for all positions of the moving array. The source positions are then directly estimated by fusing the extended noise subspaces without computing the intermediate parameters, thereby avoiding the data association problem inherent in two-step methods. Our proposed DPD algorithm combines the low complexity of SDF with the high robustness to noise and sensor errors that comes from exploiting signal noncircularity. Specifically, a closed-form expression for the localization mean square error (MSE) of the algorithm and the stochastic Cramér–Rao bound for strict-sense noncircular signals are derived. Simulation results validate our theoretical prediction for MSE and also demonstrate that the proposed algorithm outperforms other localization methods in terms of accuracy and capacity to resolve noncircular sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Abeida, J.-P. Delmas, MUSIC-like estimation of direction of arrival for noncircular sources. IEEE Trans. Signal Process. 54(7), 2678–2690 (2006)

    Article  Google Scholar 

  2. H. Abeida, J.-P. Delmas, Statistical performance of MUSIC-Like algorithms in resolving noncircular sources. IEEE Trans. Signal Process. 56(9), 4317–4329 (2008)

    Article  MathSciNet  Google Scholar 

  3. A. Amar, A.J. Weiss, Direct position determination of multiple radio signals. IEEE Int. Conf. Acoust. Speech Signal Process. 2, ii-81-4 (2004)

  4. A. Amar, A.J. Weiss, A decoupled algorithm for geolocation of multiple emitters. Sig. Process. 87(10), 2348–2359 (2007)

    Article  MATH  Google Scholar 

  5. D. Bruno, M. Oispuu, E. Ruthotto, Localization of multiple sources with a moving array using subspace data fusion, in Information Fusion, 2008 11th International Conference on. IEEE (2008), pp.1–7

  6. P. Chargé, Y. Wang, J. Saillard, A non-circular sources direction finding method using polynomial rooting. Sig. Process. 81(8), 1765–1770 (2001)

    Article  MATH  Google Scholar 

  7. J.-P. Delmas, H. Abeida, Stochastic Cramér–Rao bound for noncircular signals with application to DOA estimation. IEEE Trans. Signal Process. 52(11), 3192–3199 (2004)

    Article  MathSciNet  Google Scholar 

  8. Z.J. Fu, K. Ren, J.G. Shu, X.M. Sun, F.X. Huang, Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2016)

  9. J. Li, L. Yang, F. Guo, Coherent summation of multiple short-time signals for direct positioning of a wideband source based on delay and Doppler. Digit. Signal Proc. 48(C), 58–70 (2016)

    Article  MathSciNet  Google Scholar 

  10. S.C. Nardone, M.L. Graham, A closed-form solution to bearings-only target motion analysis. IEEE J. Ocean. Eng. 22(1), 168–178 (1997)

    Article  Google Scholar 

  11. M. Oispuu, U. Nickel, Direct detection and position determination of multiple sources with intermittent emission. Sig. Process. 90(12), 3056–3064 (2010)

    Article  MATH  Google Scholar 

  12. I. P. Pokrajac, D. Vučić, One-step signal selective direct positioning algorithm of cyclostationary signals, in 2010 5th European Conference on Circuits and Systems for Communications (ECCSC) (2010), pp. 298–301

  13. A.M. Reuven, A.J. Weiss, Direct position determination of cyclostationary signals. Sig. Process. 89(12), 2448–2464 (2009)

    Article  MATH  Google Scholar 

  14. J.Y. Shen, A.F. Molisch, J. Salmi, Accurate passive location estimation using TOA measurements. IEEE Trans. Wireless Commun. 11(6), 253–257 (2011)

    Google Scholar 

  15. P. Stoica, A. Nehorai, T. Söderström, Decentralized array processing using the MODE algorithm. Circuits Syst. Signal Process. 14(1), 17–38 (1995)

    Article  MATH  Google Scholar 

  16. T. Tirer, A.J. Weiss, High resolution direct position determination of radio frequency sources. IEEE Signal Process. Lett. 23(2), 192–196 (2016)

    Article  Google Scholar 

  17. L. Tzafri, A.J. Weiss, High-resolution direct position determination using MVDR. IEEE Trans. Wireless Commun. 15(9), 6449–6461 (2016)

    Article  Google Scholar 

  18. D. Wang, Y. Wu, Statistical performance analysis of direct position determination method based on Doppler shifts in presence of model errors. Multidimens. Syst. Signal Process. 1–34 (2015)

  19. D. Wang, G. Zhang, C.Y. Shen, J. Zhang, Direct position determination algorithm for constant modulus signals with single moving observer. Acta Aeronaut. Astronaut. Sin. 37(5), 1622–1633 (2016)

    Google Scholar 

  20. M. Wax, T. Kailath, Optimum localization of multiple sources by passive arrays. IEEE Trans. Acoust. Speech Signal Process. 31(5), 1210–1217 (1983)

    Article  Google Scholar 

  21. A.J. Weiss, Direct position determination of narrowband radio frequency transmitters. IEEE Signal Process. Lett. 11(5), 513–516 (2004)

    Article  Google Scholar 

  22. A.J. Weiss, A. Amar, Direct position determination of multiple radio signals. EURASIP J. Appl. Signal Process. 1, 37–49 (2005)

    Article  MATH  Google Scholar 

  23. F. Wen, Q. Wan, L.Y. Luo, Time-difference-of-arrival estimation for noncircular signals using information theory. AEU Int. J. Electron. Commun. 67(67), 242–245 (2013)

    Article  Google Scholar 

  24. Y. Xia, C.C. Took, D.P. Mandic, An augmented affine projection algorithm for the filtering of noncircular complex signals. Sig. Process. 90(6), 1788–1799 (2010)

    Article  MATH  Google Scholar 

  25. J.X. Yin, Y. Wu, D. Wang, An auto-calibration method for spatially and temporally correlated noncircular sources in unknown noise fields. Multidimens. Syst. Signal Process. 27(2), 511–539 (2016)

    Article  MathSciNet  Google Scholar 

  26. H. Zhang, L. Li, W. Li, Independent vector analysis for convolutive blind noncircular source separation, in IEEE 2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) (2010), pp. 1–4

  27. X.D. Zhang, Matrix Analysis and Application (Tsinghua University Press, Beijing, 2004)

    Google Scholar 

  28. Y.H. Zhang, X.M. Sun, B.W. Wang, Efficient algorithm for K-barrier coverage based on integer linear programming. China Commun. 13(7), 16–23 (2016)

    Article  Google Scholar 

  29. J.F. Zhang, T.S. Qiu, A novel covariance based noncircular sources direction finding method under impulsive noise environment. Sig. Process. 98(8), 252–262 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, Prof. M. N. S. Swamy, and the Associate Editor for their helpful suggestions in revising and improving our paper. This work was supported by the National Natural Science Foundation of China under Grant 61201381, China Postdoctoral Science Foundation under Grant 2016M592989, the Outstanding Youth Foundation of Information Engineering University under Grant 2016603201, and the Self-Topic Foundation of Information Engineering University under Grant 2016600701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-xin Yin.

Appendices

Appendix 1

Proof of (29):

Let \(p_i\) be the ith entry of the position vector \({\varvec{p}}\in {\mathbb {R}}^{D\times 1}\). To derive \({\hat{{\varvec{v}}}}^{1( {\varvec{p}} )} (\varvec{\bar{{p}}}_q )\), we need to start from the first-order partial derivative of \(\hat{{V}}({\varvec{p}})\) (see 20) with respect to \(p_i\). This is given by

$$\begin{aligned} \hat{{v}}^{( {p_i } )} ({\varvec{p}})= & {} \frac{\partial \hat{{V}}({\varvec{p}})}{\partial p_i } \nonumber \\= & {} \sum _{k=1}^K {\hat{{g}}_{k1}^{( {p_i } )} ({\varvec{p}})\hat{{g}}_{k1} ({\varvec{p}})} +\sum _{k=1}^K {\hat{{g}}_{k1}^{( {p_i } )} ({\varvec{p}})\hat{{g}}_{k1} ({\varvec{p}})} -\sum _{k=1}^K {\hat{{g}}_{k2}^{( {p_i } )} ({\varvec{p}})\hat{{g}}_{k2}^*({\varvec{p}})} \nonumber \\&-\sum _{k=1}^K {\hat{{g}}_{k2}^{( {p_i } )*} ({\varvec{p}})\hat{{g}}_{k2} ({\varvec{p}})} \nonumber \\= & {} \sum _{k=1}^K {2\hat{{g}}_{k1}^{( {p_i } )} ({\varvec{p}})\hat{{g}}_{k1} ({\varvec{p}})} -\sum _{k=1}^K {2\hbox {Re}\left\{ {\hat{{g}}_{k2}^{( {p_i } )} ({\varvec{p}})\hat{{g}}_{k2}^*({\varvec{p}})} \right\} } , \end{aligned}$$
(48)

where the fact that \(\hat{{g}}_{k1} ({\varvec{p}})\) has a real value for its Hermitian form is used. \(\hat{{g}}_{k1}^{( {p_i } )} ({\varvec{p}})\) and \(\hat{{g}}_{k2}^{( {p_i } )} ({\varvec{p}})\) are the first-order partial derivatives of \(\hat{{g}}_{k1} ({\varvec{p}})\) and \(\hat{{g}}_{k2} ({\varvec{p}})\) with respect to \(p_i\) and can be written as

$$\begin{aligned} \hat{{g}}_{k1}^{( {p_i } )} ({\varvec{p}})= & {} 2\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i } ) {\mathrm{H}}}({\varvec{p}}){\hat{\varvec{{\varPi }}}}_{k1} {\varvec{a}}_k ({\varvec{p}})} \right\} , \nonumber \\ \hat{{g}}_{k2}^{( {p_i } )} ({\varvec{p}})= & {} 2{\varvec{a}}_k^{({p_i}) {\mathrm{H}}} ({\varvec{p}}) {\hat{\varvec{{\varPi }}}}_{k2} {\varvec{a}}_k^*({\varvec{p}}), \end{aligned}$$
(49)

in which \({\varvec{a}}_k^{( {p_i } )} ({\varvec{p}})\) denotes the first-order partial derivative of \({\varvec{a}}_k ({\varvec{p}})\) with respect to \(p_i\). Inserting (49) into (48) and replacing \({\varvec{p}}\) with the true position \(\varvec{\bar{{p}}}_q\) leads to

$$\begin{aligned} \hat{{v}}^{( {p_i } )} (\varvec{\bar{{p}}}_q )= & {} \sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i }) {\mathrm{H}}} (\varvec{\bar{{p}}}_q ){\hat{\varvec{{\varPi }}}}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q ){\hat{\varvec{{\varPi }}}}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} } \nonumber \\&+\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i } ) {\mathrm{H}}} (\varvec{\bar{{p}}}_q ){\hat{\varvec{{\varPi }}}}_{k2} {\varvec{a}}_k^{*}(\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q ){\hat{\varvec{{\varPi }}}}_{k2}^*{\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} } . \end{aligned}$$
(50)

After substituting \({\hat{\varvec{{\varPi }}}}_{k1} =\varvec{{\varPi }}_{k1} +\varvec{\delta \hat{{{\varPi }}}}_{k1} +o( {\Vert {\varvec{\delta \hat{{{\varPi }}}}_{k1} } \Vert _{\mathrm{F}} })\) and \({\hat{\varvec{{\varPi }}}}_{k2} =\varvec{{\varPi }}_{k2} +\varvec{\delta \hat{{{\varPi }}}}_{k2} +o( {\Vert {\varvec{\delta \hat{{{\varPi }}}}_{k2} } \Vert _{\mathrm{F}}})\) into (50), we have

$$\begin{aligned} \hat{{v}}^{( {p_i } )} (\varvec{\bar{{p}}}_q )= & {} v^{( {p_i } )} (\varvec{\bar{{p}}}_q )+ \sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i }) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{\delta \hat{{{\varPi }}}}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} } \nonumber \\&+\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i }) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q )\varvec{\delta \hat{{{\varPi }}}}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} } \nonumber \\&-\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i } ) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{\delta \hat{{{\varPi }}}}_{k2} {\varvec{a}}_k^{*}(\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2}^*{\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} } \nonumber \\&-\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i }) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2} {\varvec{a}}_k^{*}(\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{\delta \hat{{{\varPi }}}}_{k2}^*{\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} }\nonumber \\&+o\left( {\Vert {\varvec{\delta \hat{{{\varPi }}}}_{\mathrm{NC},k} } \Vert _{\mathrm{F}} } \right) . \end{aligned}$$
(51)

Now, we recall the ith component of the matrix equation in (26):

$$\begin{aligned} \hat{{v}}^{( {p_i } )} (\varvec{\bar{{p}}}_q )=v^{( {p_i } )} (\varvec{\bar{{p}}}_q )+\;\hat{{v}}^{1( {p_i } )} (\varvec{\bar{{p}}}_q )+o\left( {\Vert {\varvec{\delta \hat{{{\varPi }}}}_{\mathrm{NC},k} } \Vert _{\mathrm{F}} } \right) . \end{aligned}$$
(52)

By comparing the terms in (51) with those in (52), we obtain an expression for \(\hat{{v}}^{1( {p_i } )} (\varvec{\bar{{p}}}_q)\) as

$$\begin{aligned} \hat{{v}}^{1( {p_i } )} (\varvec{\bar{{p}}}_q )= & {} \sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i }) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{\delta \hat{{{\varPi }}}}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} } \nonumber \\&+\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i }) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q )\varvec{\delta \hat{{{\varPi }}}}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} } \nonumber \\&-\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i }) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{\delta \hat{{{\varPi }}}}_{k2} {\varvec{a}}_k^{*}(\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2}^*{\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} } \nonumber \\&-\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i}) {\mathrm{H}}} (\varvec{\bar{{p}}}_q) \varvec{{\varPi }}_{k2} {\varvec{a}}_k^{*} (\varvec{\bar{{p}}}_q) {\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{\delta \hat{{{\varPi }}}}_{k2}^*{\varvec{a}}_k (\varvec{\bar{{p}}}_q )} \right\} } . \end{aligned}$$
(53)

Using \(\hbox {vec}[{\varvec{XYZ}}]=( {{\varvec{Z}}^{\mathrm{T}}\otimes {\varvec{X}}} )\hbox {vec}[{\varvec{Y}}]\) (see [27]), (53) becomes

$$\begin{aligned} \hat{{v}}^{1( {p_i } )} (\varvec{\bar{{p}}}_q )= & {} \sum _{k=1}^K 4\hbox {Re}\left\{ \left\{ {\varvec{a}}_k^{\mathrm{H}} (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )\left( {{\varvec{a}}_k^{\mathrm{T}} (\varvec{\bar{{p}}}_q )\otimes {\varvec{a}}_k^{( {p_i }) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )} \right) \right. \right. \\&\left. \left. +{\varvec{a}}_k^{( {p_i}) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )\left( {{\varvec{a}}_k^{\mathrm{T}} (\varvec{\bar{{p}}}_q )\otimes {\varvec{a}}_k^{\mathrm{H}} (\varvec{\bar{{p}}}_q )} \right) \right\} \times \hbox {vec} \left[ {\varvec{\delta \hat{{{\varPi }}}}_{k1} }\right] \right\} \nonumber \\&-\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{\mathrm{T}} (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2}^*{\varvec{a}}_k (\varvec{\bar{{p}}}_q )\left( {{\varvec{a}}_k^{\mathrm{H}} (\varvec{\bar{{p}}}_q )\otimes {\varvec{a}}_k^{({p_i}) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )}\right) \times \hbox {vec}\left[ {\varvec{\delta \hat{{{\varPi }}}}_{k2} }\right] } \right\} } \nonumber \\&-\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i }) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2} {\varvec{a}}_k^{*}(\varvec{\bar{{p}}}_q )\left( {{\varvec{a}}_k^{\mathrm{T}} (\varvec{\bar{{p}}}_q )\otimes {\varvec{a}}_k^{\mathrm{T}} (\varvec{\bar{{p}}}_q )} \right) \times \hbox {vec}\left[ {\varvec{\delta \hat{{{\varPi }}}}_{k2}^*}\right] } \right\} }. \nonumber \end{aligned}$$
(54)

As \(\hat{{v}}^{1( {p_i } )} (\varvec{\bar{{p}}}_q )\) is the ith element of \({\hat{{\varvec{v}}}}^{1( {\varvec{p}} )} (\varvec{\bar{{p}}}_q )\), the expression for \({\hat{{\varvec{v}}}}^{1( {\varvec{p}} )} (\varvec{\bar{{p}}}_q )\) in (29) is given by (54).

Appendix 2

Proof of (31):

For the expression \({\varvec{H}}_q =\mathop {\hbox {lim}}\limits _{L\rightarrow \infty } {\hat{{\varvec{V}}}}^{( {\varvec{p,p}} )} (\varvec{\bar{{p}}}_q )\), we first derive the ijth entry. Based on (48), the second-order partial derivative of \(\hat{{V}}({\varvec{p}})\) can be further calculated as

$$\begin{aligned} \hat{{V}}^{( {p_i ,p_j } )} ({\varvec{p}})= & {} \frac{\partial ^{2}\hat{{V}}({\varvec{p}})}{\partial p_i \partial p_j } \nonumber \\= & {} \sum _{k=1}^K {2\left\{ {\hat{{g}}_{k1}^{( {p_i ,p_j } )} ({\varvec{p}})\hat{{g}}_{k1} ({\varvec{p}})+\hat{{g}}_{k1}^{( {p_i } )} ({\varvec{p}})\hat{{g}}_{k1}^{( {p_j } )} ({\varvec{p}})} \right\} } \nonumber \\&-\sum _{k=1}^K {2\hbox {Re}\left\{ {\hat{{g}}_{k2}^{( {p_i ,p_j } )} ({\varvec{p}})\hat{{g}}_{k2}^*({\varvec{p}})+\hat{{g}}_{k2}^{( {p_i } )} ({\varvec{p}})\hat{{g}}_{k2}^{( {p_j } )*} ({\varvec{p}})} \right\} } , \end{aligned}$$
(55)

where \(\hat{{g}}_{k1}^{( {p_i } )} ({\varvec{p}})\), \(\hat{{g}}_{k1}^{( {p_j } )} ({\varvec{p}})\), \(\hat{{g}}_{k2}^{( {p_i } )} ({\varvec{p}})\), and \(\hat{{g}}_{k2}^{( {p_j } )} ({\varvec{p}})\) have similar expressions as those in (49). \(\hat{{g}}_{k1}^{( {p_i ,p_j } )} ({\varvec{p}})\) and \(\hat{{g}}_{k2}^{( {p_i ,p_j } )} ({\varvec{p}})\) represent the second-order partial derivatives of \(\hat{{g}}_{k1} ({\varvec{p}})\) and \(\hat{{g}}_{k2} ({\varvec{p}})\), respectively, and can be expressed as

$$\begin{aligned} \left\{ {\begin{array}{l} \hat{{g}}_{k1}^{( {p_i ,p_j } )} ({\varvec{p}})=2\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i}) {\mathrm{H}}} ({\varvec{p}}){\hat{\varvec{{\varPi }}}}_{k1} {\varvec{a}}_k^{({p_j } )} ({\varvec{p}})+{\varvec{a}}_k^{({p_i, p_j}) {\mathrm{H}}} ({\varvec{p}}){\hat{\varvec{{\varPi }}}}_{k1} {\varvec{a}}_k ({\varvec{p}})} \right\} , \\ \hat{{g}}_{k2}^{( {p_i ,p_j } )} ({\varvec{p}})=2{\varvec{a}}_k^{({p_i}) {\mathrm{H}}} ({\varvec{p}}){\hat{\varvec{{\varPi }}}}_{k2} {\varvec{a}}_k^{( {p_j}) {*}} ({\varvec{p}})+2{\varvec{a}}_k^{( {p_i ,p_j}) {\mathrm{H}}} ({\varvec{p}}){\hat{\varvec{{\varPi }}}}_{k2} {\varvec{a}}_k^{*}({\varvec{p}}). \\ \end{array}}\right. \end{aligned}$$
(56)

Here, \({\varvec{a}}_k^{( {p_i ,p_j } )} ({\varvec{p}})=\frac{\partial ^{2}{\varvec{a}}_k ({\varvec{p}})}{\partial p_i \partial p_j }\) denotes the second-order partial derivative of \({\varvec{a}}_k ({\varvec{p}})\).

According to (10), we have \(\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )+\varvec{{\varPi }}_{k2} {\varvec{a}}_k^*(\varvec{\bar{{p}}}_q) e^{-\hbox {j}\bar{{{\phi }}}_q }={\varvec{0}}\) (\(\bar{{{\phi }}}_q\) is the true value of \({\phi }_q\)), following which it can be proved that \(\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} =\varvec{{\varPi }}_{k2} {\varvec{a}}_k^*(\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2}^*\) (see [1]). Then, using this result and substituting (56) into (55) with \({\varvec{p}}=\varvec{\bar{{p}}}_q\), we obtain

$$\begin{aligned} \mathop {\lim }\limits _{L\rightarrow \infty } \hat{{V}}^{( {p_i ,p_j } )} (\varvec{\bar{{p}}}_q )= & {} \sum _{k=1}^K 4\hbox {Re}\left\{ {\varvec{a}}_k^{({p_i}) {\mathrm{H}}} (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k^{( {p_j } )} (\varvec{\bar{{p}}}_q ) \right. \nonumber \\&-{\varvec{a}}_k^{( {p_i}) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2} {\varvec{a}}_k^{*}(\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2}^*{\varvec{a}}_k^{( {p_j } )} (\varvec{\bar{{p}}}_q )\nonumber \\&+{\varvec{a}}_k^{({p_i}) {\mathrm{H}}} (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1}^*{\varvec{a}}_k^{( {p_j}) {*}} (\varvec{\bar{{p}}}_q ) \nonumber \\&\left. -{\varvec{a}}_k^{( {p_i}) {\mathrm{H}}} (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2}^*{\varvec{a}}_k (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2} {\varvec{a}}_k^{({p_j}) {*}} (\varvec{\bar{{p}}}_q )\right\} . \end{aligned}$$
(57)

For simplicity, we let \({\varvec{W}}_{k1} (\varvec{\bar{{p}}}_q )={\varvec{a}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1} -\varvec{{\varPi }}_{k2} {\varvec{a}}_k^{*}(\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2}^*\) and \({\varvec{W}}_{k2} (\varvec{\bar{{p}}}_q )={\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2}^*{\varvec{a}}_k (\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k2} -\varvec{{\varPi }}_{k1} {\varvec{a}}_k (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )\varvec{{\varPi }}_{k1}^*\). Consequently, the expression in (57) reduces to

$$\begin{aligned}&\mathop {\hbox {lim}}\limits _{L\rightarrow \infty } \hat{{V}}^{( {p_i ,p_j } )} (\varvec{\bar{{p}}}_q ) \\&\quad =\sum _{k=1}^K {4\hbox {Re}\left\{ {{\varvec{a}}_k^{( {p_i}) {\mathrm{H}}} (\varvec{\bar{{p}}}_q ){\varvec{W}}_{k1} (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{( {p_j } )} (\varvec{\bar{{p}}}_q )} {-{\varvec{a}}_k^{({p_i}) {\mathrm{H}}} (\varvec{\bar{{p}}}_q ){\varvec{W}}_{k2} (\varvec{\bar{{p}}}_q ){\varvec{a}}_k^{( {p_j}) {*}} (\varvec{\bar{{p}}}_q )} \right\} }. \nonumber \end{aligned}$$
(58)

Finally, the expression for \({\varvec{H}}_q\) in (31) can be deduced from (58) by noting that \({\varvec{a}}_k^{( {p_i } )} (\varvec{\bar{{p}}}_q )\) and \({\varvec{a}}_k^{( {p_j } )} (\varvec{\bar{{p}}}_q )\) are the ith andjth columns of \({\varvec{A}}_k^{( {\varvec{p}} )} (\varvec{\bar{{p}}}_q )\) for \(k=1,2,\ldots ,K\).

Appendix 3

Proof of (34):

Inserting \(\Delta {\varvec{p}}_q =-{\varvec{H}}_q^{-1}{\hat{{\varvec{v}}}}^{1( {\varvec{p}} )} (\varvec{\bar{{p}}}_q )\) into \({\varvec{C}}_{{\varvec{p}}_q } =\hbox {E}[{\Delta {\varvec{p}}_q \Delta {\varvec{p}}_q^{\mathrm{T}}}]\) yields

$$\begin{aligned} {\varvec{C}}_{{\varvec{p}}_q } ={\varvec{H}}_q^{-1}\hbox {E}\left[ {{\hat{{\varvec{v}}}}^{1( {\varvec{p}} )} (\varvec{\bar{{p}}}_q ){\hat{{\varvec{v}}}}^{1( {\varvec{p}} )\hbox {T}} (\varvec{\bar{{p}}}_q )} \right] {\varvec{H}}_q^{-1}. \end{aligned}$$
(59)

Recall that the batches of data in K time slots are assumed to be statistically independent. Therefore, the perturbation vectors for K time slots are uncorrelated, leading to

$$\begin{aligned} \left\{ {\begin{array}{l} \hbox {E}\left[ {\hbox {vec}[{\varvec{\delta {\varPi }}_{ki} }]\hbox {vec}[{\varvec{\delta {\varPi }}_{hj} }]^{\mathrm{H}}}\right] ={\varvec{O}}, \\ \hbox {E}\left[ {\hbox {vec}[{\varvec{\delta {\varPi }}_{ki} }]\hbox {vec}[{\varvec{\delta {\varPi }}_{hj} }]^{\mathrm{T}}}\right] ={\varvec{O}}, \\ \end{array}}\right. \qquad i,j=1,2;\forall k\ne h. \end{aligned}$$
(60)

Based on (60), using \(\hbox {Re}\{ {\varvec{x}} \} \hbox {Re}\{ {{\varvec{x}}^{\mathrm{T}}} \} = \frac{1}{2} \hbox {Re}\{ {\varvec{xx}^{\mathrm{T}}+\varvec{xx}^{\mathrm{H}}} \}\) and the expression for \({\hat{{\varvec{v}}}}^{1( {\varvec{p}} )} (\varvec{\bar{{p}}}_q )\) given in (29), we can write the covariance of \({\hat{{\varvec{v}}}}^{1( {\varvec{p}} )} (\varvec{\bar{{p}}}_q )\) as

$$\begin{aligned}&\hbox {E}\left[ {{\hat{{\varvec{v}}}}^{1( {\varvec{p}} )} (\varvec{\bar{{p}}}_q ){\hat{{\varvec{v}}}}^{1( {\varvec{p}} )\hbox {T}} (\varvec{\bar{{p}}}_q )}\right] \nonumber \\&\quad =\frac{8}{L}\sum _{k=1}^K \hbox {E}\left[ \hbox {Re}\left\{ {\varvec{F}}_k (\varvec{\bar{{p}}}_q )\times \sqrt{L}\varvec{\delta \hat{{\pi }}}( {\sqrt{L}\varvec{\delta \hat{{\pi }}}} )^{\mathrm{T}}\times {\varvec{F}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )+{\varvec{F}}_k (\varvec{\bar{{p}}}_q ) \right. \right. \nonumber \\&\qquad \qquad \quad \qquad \left. \left. \times \sqrt{L}\varvec{\delta \hat{{\pi }}}( {\sqrt{L}\varvec{\delta \hat{{\pi }}}} )^{\mathrm{H}}\times {\varvec{F}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q ) \right\} \right] \nonumber \\&\quad =\frac{8}{L}\sum _{k=1}^K \hbox {Re}\left\{ {\varvec{F}}_k (\varvec{\bar{{p}}}_q )\times \hbox {E}\left\{ {\sqrt{L}\varvec{\delta \hat{{\pi }}}( {\sqrt{L}\varvec{\delta \hat{{\pi }}}} )^{\mathrm{T}}} \right\} \times {\varvec{F}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )+{\varvec{F}}_k (\varvec{\bar{{p}}}_q ) \right. \nonumber \\&\qquad \qquad \qquad \qquad \left. \times \hbox {E}\left\{ {\sqrt{L}\varvec{\delta \hat{{\pi }}}( {\sqrt{L}\varvec{\delta \hat{{\pi }}}} )^{\mathrm{H}}} \right\} \times {\varvec{F}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q ) \right\} \\&\quad =\frac{8}{L}\sum _{k=1}^K {\hbox {Re}\left\{ {{\varvec{F}}_k (\varvec{\bar{{p}}}_q )\varvec{{C}}_{\varvec{{\varPi }}_{k1} ,\varvec{{\varPi }}_{k2} ,\varvec{{\varPi }}_{k2}^*}^{\prime } {\varvec{F}}_k^{\mathrm{T}}(\varvec{\bar{{p}}}_q )+{\varvec{F}}_k (\varvec{\bar{{p}}}_q ){\varvec{C}}_{\varvec{{\varPi }}_{k1} ,\varvec{{\varPi }}_{k2} ,\varvec{{\varPi }}_{k2}^*} {\varvec{F}}_k^{\mathrm{H}}(\varvec{\bar{{p}}}_q )} \right\} }, \nonumber \end{aligned}$$
(61)

where \(\varvec{\delta \hat{{\pi }}}=[{\hbox {vec}[{\varvec{\delta \hat{{{\varPi }}}}_{k1} }]^{\mathrm{T}}\hbox {,vec}[{\varvec{\delta \hat{{{\varPi }}}}_{k2} }]^{\mathrm{T}}\hbox {,vec}[{\varvec{\delta \hat{{{\varPi }}}}_{k2}^*}]^{\mathrm{T}}} ]^{\mathrm{T}}\). \({\varvec{C}}_{\varvec{{\varPi }}_{k1} ,\varvec{{\varPi }}_{k2} ,\varvec{{\varPi }}_{k2}^*}\) and \(\varvec{{C}}_{\varvec{{\varPi }}_{k1} ,\varvec{{\varPi }}_{k2} ,\varvec{{\varPi }}_{k2}^*}^{\prime }\) are the covariance matrix and unconjugated covariance matrix of \(\sqrt{L}\varvec{\delta \hat{{\pi }}}\), respectively. Then, because \(\hbox {Re}\{ {\varvec{X}} \}=\frac{1}{2}( {{\varvec{X}}+{\varvec{X}}^{*}})\), (61) becomes

$$\begin{aligned}&\hbox {E}\left[ {{\hat{{\varvec{v}}}}^{1( {\varvec{p}} )} (\varvec{\bar{{p}}}_q ){\hat{{\varvec{v}}}}^{1( {\varvec{p}} )\hbox {T}} (\varvec{\bar{{p}}}_q )}\right] \nonumber \\&\quad =\frac{4}{L}\sum _{k=1}^K \left\{ {{\varvec{F}}_k (\varvec{\bar{{p}}}_q )\varvec{{C}}_{\varvec{{\varPi }}_{k1} ,\varvec{{\varPi }}_{k2} ,\varvec{{\varPi }}_{k2}^*}^{\prime } {\varvec{F}}_k^{\mathrm{T}} (\varvec{\bar{{p}}}_q )+{\varvec{F}}_k^{*} (\varvec{\bar{{p}}}_q )\varvec{{C}}_{\varvec{{\varPi }}_{k1} ,\varvec{{\varPi }}_{k2} ,\varvec{{\varPi }}_{k2}^*}^{\prime *} {\varvec{F}}_k^{\mathrm{H}} (\varvec{\bar{{p}}}_q )} \right. \nonumber \\&\qquad \left. +{\varvec{F}}_k (\varvec{\bar{{p}}}_q ){\varvec{C}}_{\varvec{{\varPi }}_{k1} ,\varvec{{\varPi }}_{k2} ,\varvec{{\varPi }}_{k2}^*} {\varvec{F}}_k^{\mathrm{H}} (\varvec{\bar{{p}}}_q )+{\varvec{F}}_k^{*} (\varvec{\bar{{p}}}_q ){\varvec{C}}_{\varvec{{\varPi }}_{k1} ,\varvec{{\varPi }}_{k2} ,\varvec{{\varPi }}_{k2}^*}^*{\varvec{F}}_k^{\mathrm{T}} (\varvec{\bar{{p}}}_q ) \right\} \\&\quad =\frac{4}{L}\sum _{k=1}^K {\tilde{{\varvec{F}}}_k (\varvec{\bar{{p}}}_q) \varvec{{C}}_{\tilde{\varvec{{\varPi }}}_k}^{\prime } \tilde{{\varvec{F}}}_k^{\mathrm{T}} (\varvec{\bar{{p}}}_q )}. \nonumber \end{aligned}$$
(62)

where \(\varvec{{C}}_{\tilde{\varvec{{\varPi }}}_k}^{\prime }\) are defined in (33). After substituting (62) into (59), the proof of (34) is complete.

Appendix 4

Derivation of \(\frac{\partial \tilde{{\varvec{y}}}}{\partial \tilde{{\varvec{p}}}^{\mathrm{T}}}\) and \(\frac{\partial \tilde{{\varvec{y}}}}{\partial \varvec{\eta }^{\mathrm{T}}}\):

To further derive the expressions for \(\frac{\partial \tilde{{\varvec{y}}}}{\partial \tilde{{\varvec{p}}}^{\mathrm{T}}}\) and \(\frac{\partial \tilde{{\varvec{y}}}}{\partial \varvec{\eta }^{\mathrm{T}}}\) in (45), we first attempt to compute \(\frac{\partial \varvec{{{\tilde{y}}}}_k^{\prime }}{\partial \tilde{{\varvec{p}}}^{\mathrm{T}}}\), \(\frac{\partial \varvec{{{\tilde{y}}}}_k^{\prime }}{\partial {\varvec{{\phi }}}^{\mathrm{T}}}\), \(\frac{\partial \varvec{{{\tilde{y}}}}_k^{\prime }}{\partial \varvec{\omega }^{\mathrm{T}}}\), and \(\frac{\partial \varvec{{{\tilde{y}}}}_k^{\prime }}{\partial \sigma _{\mathrm{n}}^2}\) for

$$\begin{aligned} \frac{\partial \tilde{{\varvec{y}}}}{\partial \tilde{{\varvec{p}}}^{\mathrm{T}}}=\left[ {\begin{array}{c} \frac{\partial \varvec{{{\tilde{y}}}}_1^{\prime }}{\partial \tilde{{\varvec{p}}}^{\mathrm{T}}} \\ \frac{\partial \varvec{{{\tilde{y}}}}_2^{\prime }}{\partial \tilde{{\varvec{p}}}^{\mathrm{T}}} \\ \vdots \\ \frac{\partial \varvec{{{\tilde{y}}}}_K^{\prime }}{\partial \tilde{{\varvec{p}}}^{\mathrm{T}}} \\ \end{array}}\right] , \quad \frac{\partial \tilde{{\varvec{y}}}}{\partial \varvec{\eta }^{\mathrm{T}}}= \left[ {{\begin{array}{ccc} \frac{\partial \varvec{{{\tilde{y}}}}_1^{\prime }}{\partial {\varvec{{\phi }}}^{\mathrm{T}}} &{} \frac{\partial \varvec{{{\tilde{y}}}}_1^{\prime }}{\partial \varvec{\omega }^{\mathrm{T}}} &{} \frac{\partial \varvec{{{\tilde{y}}}}_1^{\prime }}{\partial \sigma _{\mathrm{n}}^2 } \\ \frac{\partial \varvec{{{\tilde{y}}}}_2^{\prime }}{\partial {\varvec{{\phi }}}^{\mathrm{T}}} &{} \frac{\partial \varvec{{{\tilde{y}}}}_2^{\prime }}{\partial \varvec{\omega }^{\mathrm{T}}} &{} \frac{\partial \varvec{{{\tilde{y}}}}_2^{\prime }}{\partial \sigma _{\mathrm{n}}^2 } \\ \vdots &{} \vdots &{} \vdots \\ \frac{\partial \varvec{{{\tilde{y}}}}_K^{\prime }}{\partial {\varvec{{\phi }}}^{\mathrm{T}}} &{} \frac{\partial \varvec{{{\tilde{y}}}}_K^{\prime }}{\partial \varvec{\omega }^{\mathrm{T}}} &{} \frac{\partial \varvec{{{\tilde{y}}}}_K^{\prime }}{\partial \sigma _{\mathrm{n}}^2 } \\ \end{array} }}\right] . \end{aligned}$$
(63)

Applying the formula \(\hbox {vec}[{\varvec{XYZ}}]= ({{\varvec{Z}}^{\mathrm{T}}\otimes {\varvec{X}}}) \hbox {vec}[{\varvec{Y}}]\) (see [27]) to \(\tilde{{\varvec{y}}}_k =\hbox {vec}[{\tilde{{\varvec{R}}}_k }]\) yields

$$\begin{aligned} \tilde{{\varvec{y}}}_k =\left( {{\varvec{A}}_{\mathrm{NC},k}^*\otimes {\varvec{A}}_{\mathrm{NC},k} } \right) {\varvec{r}}_k^{\mathrm{s}} +\sigma _{\mathrm{n}}^2 \hbox {vec}[{{\varvec{I}}_{2M} }], \end{aligned}$$
(64)

where \({\varvec{r}}_k^{\mathrm{s}} =\hbox {vec} [{{\varvec{R}}_k^{\mathrm{s}} }]\).

Let \(p_{qi} ( {i=1,2,\ldots ,D} )\) be the ith element of the position vector \({\varvec{p}}_q ( q=1,2,\ldots ,Q)\). Then, we define the vector \(\tilde{{\varvec{p}}}_i =[p_{1i} ,p_{2i} , \ldots ,p_{Qi} ]^{\mathrm{T}}\) and the following two derivative matrices:

$$\begin{aligned} \left\{ {\begin{array}{l} {\varvec{A}}_{\mathrm{NC},k}^{( {\tilde{{\varvec{p}}}_i } )} =\left[ {\frac{\partial {\varvec{a}}_{\mathrm{NC},k} ({\varvec{p}}_1 ,{\phi }_1 )}{\partial p_{1i} }\,,\frac{\partial {\varvec{a}}_{\mathrm{NC},k} ({\varvec{p}}_2 ,{\phi }_2 )}{\partial p_{2i} }\;,\ldots ,\frac{\partial {\varvec{a}}_{\mathrm{NC},k} ({\varvec{p}}_Q ,{\phi }_Q )}{\partial p_{Qi} }}\right] , \quad i=1,2,\ldots ,D, \\ {\varvec{A}}_{\mathrm{NC},k}^{( {\varvec{{\phi }}} )} =\left[ {\frac{\partial {\varvec{a}}_{\mathrm{NC},k} ({\varvec{p}}_1 ,{\phi }_1 )}{\partial {\phi }_1 }\;,\frac{\partial {\varvec{a}}_{\mathrm{NC},k} ({\varvec{p}}_2 ,{\phi }_2 )}{\partial {\phi }_2 } \, ,\ldots ,\frac{\partial {\varvec{a}}_{\mathrm{NC},k} ({\varvec{p}}_Q ,{\phi }_Q )}{\partial {\phi }_Q }}\right] , \\ \end{array}}\right. \end{aligned}$$
(65)

for \(k=1,2,\ldots ,K\). As the sources are assumed to be uncorrelated, \({\varvec{R}}_k^{\mathrm{s}}\) is a diagonal matrix. Using this result, a series of manipulations based on (64) lead to

$$\begin{aligned} \left\{ {\begin{array}{l} \frac{\partial \tilde{{\varvec{y}}}_k }{\partial \tilde{{\varvec{p}}}_i^{\mathrm{T}} }=\left( {{\varvec{A}}_{\mathrm{NC},k} {\varvec{R}}_k^{\mathrm{s}} } \right) ^{*}{*}{\varvec{A}}_{\mathrm{NC},k}^{( {\tilde{{\varvec{p}}}_i } )} +{\varvec{A}}_{\mathrm{NC},k}^{( {\tilde{{\varvec{p}}}_i } )*} {*}\left( {{\varvec{A}}_{\mathrm{NC},k} {\varvec{R}}_k^{\mathrm{s}} } \right) , \qquad i=1,2\ldots D, \\ \frac{\partial \tilde{{\varvec{y}}}_k }{\partial {\varvec{{\phi }}}^{\mathrm{T}}}=\left( {{\varvec{A}}_{\mathrm{NC},k} {\varvec{R}}_k^{\mathrm{s}} } \right) ^{*}{*}{\varvec{A}}_{\mathrm{NC},k}^{( {\varvec{{\phi }}} )} +{\varvec{A}}_{\mathrm{NC},k}^{({\varvec{{\phi }}} )*} {*}\left( {{\varvec{A}}_{\mathrm{NC},k} {\varvec{R}}_k^{\mathrm{s}} } \right) , \\ \frac{\partial \tilde{{\varvec{y}}}_k }{\partial \varvec{\omega }^{\mathrm{T}}}=\left[ {{\varvec{O}},\ldots {\varvec{O}},{\varvec{A}}_{\mathrm{NC},k}^*{*}{\varvec{A}}_{\mathrm{NC},k} ,{\varvec{O}},\ldots {\varvec{O}}}\right] , \\ \frac{\partial \tilde{{\varvec{y}}}_k }{\partial \sigma _{\mathrm{n}}^2 }=\hbox {vec}[{{\varvec{I}}_{2M} }], \\ \end{array}}\right. \end{aligned}$$
(66)

for \(k=1,2,\ldots ,K\). (Here, \({\varvec{A}}_{\mathrm{NC},k}\) denotes \({\varvec{A}}_{\mathrm{NC},k} (\tilde{{\varvec{p}}}, {\varvec{{\phi }}})\).) Combining (66) and \(\varvec{{{\tilde{y}}}}_k^{\prime } =( {\tilde{{\varvec{R}}}_k^{-\mathrm{T}/2}\otimes \tilde{{\varvec{R}}}_k^{-1/2}} )\tilde{{\varvec{y}}}_k\), we employ the formulas \(( {{\varvec{B}}\otimes {\varvec{C}}}) ({{\varvec{X}}*{\varvec{Y}}}) = \varvec{BX}*\varvec{CY}\) and \(\hbox {vec}[{\varvec{XYZ}}] = ({{\varvec{Z}}^{\mathrm{T}}\otimes {\varvec{X}}} )\hbox {vec}[{\varvec{Y}}]\) (see [27]) to obtain the partial derivatives of \(\varvec{{{\tilde{y}}}}_k^{\prime }\):

$$\begin{aligned} \left\{ \begin{aligned} \frac{\partial \varvec{{{\tilde{y}}}}_k^{\prime }}{\partial \tilde{{\varvec{p}}}_i^{\mathrm{T}} }=&\left( {\tilde{{\varvec{R}}}_k^{-1/2} {\varvec{A}}_{\mathrm{NC},k} {\varvec{R}}_k^{\mathrm{s}} } \right) ^{\mathrm{*}}{*}\tilde{{\varvec{R}}}_k^{-1/2} {\varvec{A}}_{\mathrm{NC},k}^{( {\tilde{{\varvec{p}}}_i } )} +\left( {\tilde{{\varvec{R}}}_k^{-1/2} {\varvec{A}}_{\mathrm{NC},k}^{( {\tilde{{\varvec{p}}}_i } )} } \right) ^{\mathrm{*}}*\tilde{{\varvec{R}}}_k^{-1/2} {\varvec{A}}_{\mathrm{NC},k} {\varvec{R}}_k^{\mathrm{s}}, \\&\quad i=1,2,\ldots ,D, \\ \frac{\partial \varvec{{{\tilde{y}}}}_k^{\prime }}{\partial {\varvec{{\phi }}}^{\mathrm{T}}}=&\left( {\tilde{{\varvec{R}}}_k^{-1/2} {\varvec{A}}_{\mathrm{NC},k} {\varvec{R}}_k^{\mathrm{s}} } \right) ^{\mathrm{*}}{*}\tilde{{\varvec{R}}}_k^{-1/2} {\varvec{A}}_{\mathrm{NC},k}^{( {\varvec{{\phi }}} )} +\left( {\tilde{{\varvec{R}}}_k^{-1/2} {\varvec{A}}_{\mathrm{NC},k}^{({\varvec{{\phi }}} )} } \right) ^{\mathrm{*}}*\tilde{{\varvec{R}}}_k^{-1/2} {\varvec{A}}_{\mathrm{NC},k} {\varvec{R}}_k^{\mathrm{s}} , \\ \frac{\partial \varvec{{{\tilde{y}}}}_k^{\prime }}{\partial \varvec{\omega }^{\mathrm{T}}}=&\left[ {{\varvec{O}},\ldots {\varvec{O}},\tilde{{\varvec{R}}}_k^{-\hbox {T/2}} {\varvec{A}}_{\mathrm{NC},k}^*{*}\tilde{{\varvec{R}}}_k^{-1/2} {\varvec{A}}_{\mathrm{NC},k} ,{\varvec{O}},\ldots {\varvec{O}}}\right] , \\ \frac{\partial \varvec{{{\tilde{y}}}}_k^{\prime }}{\partial \sigma _{\mathrm{n}}^2 }=&\hbox {vec}\left[ {\tilde{{\varvec{R}}}_k^{-1}}\right] . \\ \end{aligned}\right. \nonumber \\ \end{aligned}$$
(67)

Now, \(\frac{\partial \tilde{{\varvec{y}}}}{\partial \tilde{{\varvec{p}}}^{\mathrm{T}}}\) and \(\frac{\partial \tilde{{\varvec{y}}}}{\partial \varvec{\eta }^{\mathrm{T}}}\) can be constituted by inserting the above expressions into (63).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Jx., Wu, Y. & Wang, D. Direct Position Determination of Multiple Noncircular Sources with a Moving Array. Circuits Syst Signal Process 36, 4050–4076 (2017). https://doi.org/10.1007/s00034-017-0499-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0499-4

Keywords

Navigation