Skip to main content
Log in

Compact and Broadband Variable True-Time Delay Line with DLL-Based Delay-Time Control

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This study presents the design and implementation of a compact and wideband active variable true-time delay line for timed array applications. Using a combination of coarse delay cells and fine delay cells, the proposed delay line achieves a large delay range and a high delay tuning resolution. Instead of LC delay lines or transmission lines, the delay can be approximated by compact active filters using transconductors and capacitors. The coarse delay cell adopts inductive peaking to broaden the bandwidth, and the fine delay cell employs a novel differential active inductor to improve the delay resolution and integration level. The group delays of the coarse delay cells and fine delay cells are analyzed and optimized. The signal transmission path is controlled by path-selection amplifiers and VI conversion switches to achieve delay variability. The delay time is calibrated by the delay-locked loop (DLL) to mitigate the process, voltage and temperature variations. The complementary metal-oxide-semiconductor (CMOS) variable true-time delay line is fabricated in a 0.18-\(\upmu \hbox {m}\) CMOS process. Experiments indicate that the maximal relative delay is 95 ps and that the delay resolution is 5 ps within a 10% delay variation over a frequency range of 0.6–4.2 GHz. The chip dissipates 88 mW under a 1.8-V supply, and the core area including the DLL circuit is only 0.05 \(\hbox { mm}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. E. Adabi, A.M. Niknejad, Broadband variable passive delay elements based on an inductance multiplication technique, in IEEE Radio Frequency Integrated Circuits Symposium, (2008), pp. 445–448

  2. K. Bult, H. Wallinga, A CMOS analog continuous-time delay line with adaptive delay-time control. IEEE J. Solid State Circuits 23(3), 759–766 (1988)

    Article  Google Scholar 

  3. Z. Cao, Q. Ma, A.B. Smolders, Y. Jiao et al., Advanced integration techniques on broadband millimeter-wave beam steering for 5G wireless networks and beyond. IEEE J. Quantum Electron. 52(1), 1–20 (2016)

    Article  Google Scholar 

  4. Y. Chen, W. Li, An ultra-wideband pico-second true-time-delay circuit with differential tunable active inductor. Analog Integr. Circuits Signal Process. 91(1), 9–19 (2017)

    Article  Google Scholar 

  5. Y. Chen, Z. Wang et al., Low-jitter PLL based on symmetric phase-frequency detector technique. Analog Integr. Circuits Signal Process. 62(1), 23–27 (2010)

    Article  Google Scholar 

  6. Y.W. Chia, T.H. Lim, J.K. Yin, P.Y. Chee, S.W. Leong, C.K. Sim, Electronic beam-steering design for UWB phased array. IEEE Trans. Microw. Theory Tech. 54(6), 2431–2438 (2006)

    Article  Google Scholar 

  7. T.S. Chu, H. Hashemi, A true time-delay-based bandpass multi-beam array at mm-waves supporting instantaneously wide bandwidths, in IEEE International Solid-State Circuits Conference, (2010), pp. 38–39

  8. T.S. Chu, J. Roderick, H. Hashemi, An integrated ultra-wideband timed array receiver in \(0.13\,\mu \text{ m }\) CMOS using a path-sharing true time delay architecture. IEEE J. Solid State Circuits 42(12), 2834–2850 (2008)

    Article  Google Scholar 

  9. J. Duan, Z. He, Doppler radar by using single multicarrier pulse based on optical fibre delay lines. J. Syst. Eng. Electron. 21(3), 404–407 (2010)

    Article  Google Scholar 

  10. Y. Gao, Y. Zheng, S. Diao et al., An integrated beamformer for IR-UWB receiver in 0.18-\(\mu \)m CMOS, in IEEE International Symposium on Circuits and Systems, (2011), pp. 1548–1551

  11. S.K. Garakoui, E.A.M. Klumperink, B. Nauta, F.E. Van Vliet, Time delay circuits: a quality criterion for delay variations versus frequency, in IEEE International Symposium on Circuits and Systems, (2010), pp. 4281–4284

  12. S.K. Garakoui, E.A.M. Klumperink, B. Nauta, F.E. Van Vliet, A 1-to-2.5 GHz phased-array IC based on gm-RC all-pass time-delay cells, in IEEE International Solid-State Circuits Conference, (2012), pp. 80–82

  13. S.K. Garakoui, E.A.M. Klumperink, B. Nauta, F.E. Van Vliet, Frequency limitations of first-order all-pass delay circuits. Circuits Syst. II Express Br. IEEE Trans. 60(9), 572–576 (2013)

    Article  Google Scholar 

  14. S.K. Garakoui, E.A.M. Klumperink, B. Nauta, F.E. Van Vliet, Compact cascadable \(\text{ g }_{{\rm m}}\)-C all-pass true time delay cell with reduced delay variation over frequency. IEEE J. Solid State Circuits 50(3), 693–703 (2015)

    Article  Google Scholar 

  15. L. He, W. Li, N. Li, J. Ren, A 24-GHz novel true-time-delay phase shifter utilizing negative group delay compensation, in Phased Array Systems and Technology (PAST), IEEE International Symposium on 2016, (2016), pp. 18–21

  16. C. Jiang, A. Mostajeran, R. Han, M. Emadi, H. Sherry, A. Cathelin, E. Afshari, A fully integrated 320 GHz coherent imaging transceiver in 130 nm SiGe BiCMOS. IEEE J. Solid State Circuits 51(11), 2596–2609 (2016)

    Article  Google Scholar 

  17. X. Li, S. Shekhar, D.J. Allstot, GM-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-\(\mu \)m CMOS. IEEE J. Solid State Circuits 40(12), 2609–2619 (2005)

    Article  Google Scholar 

  18. F.R. Liao, S.S. Luc, A programmable edge-combining DLL with a current-splitting charge pump for SPUR suppression. Circuits Syst. II Express Br. IEEE Trans. 57(12), 946–950 (2011)

    Article  Google Scholar 

  19. L.H. Lu, H.H. Hsieh, Y.T. Liao, A wide tuning-range CMOS VCO with a differential tunable active inductor. IEEE Trans. Microw. Theory Tech. 54(9), 3462–3468 (2006)

    Article  Google Scholar 

  20. Q. Ma, D.M.W. Leenaerts, P.G.M. Baltus, Silicon-based true-time-delay phased-array front-ends at Ka-band. IEEE Trans. Microw. Theory Tech. 63(9), 2942–2952 (2015)

    Article  Google Scholar 

  21. M. Maeng, F. Bien, Y. Hur, H. Kim, 0.18-\(\mu \)m CMOS equalization techniques for 10-Gb/s fiber optical communication links. Microw. Theory Tech. IEEE Trans. 53(11), 3509–3519 (2005)

    Article  Google Scholar 

  22. R. Navid, E.H. Chen, M. Hossain, B. Leibowitz, J. Ren, C.H.A. Chou, A 40 Gb/s serial link transceiver in 28 nm CMOS technology. IEEE J. Solid State Circuits 50(4), 814–827 (2015)

    Article  Google Scholar 

  23. J. Roderick, H. Krishnaswamy, K. Newton, H. Hashemi, Silicon-based ultra-wideband beam-forming. IEEE J. Solid State Circuits 41(8), 1726–1739 (2006)

    Article  Google Scholar 

  24. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2001)

    Google Scholar 

  25. Y.H. Tu, K.H. Cheng, H.Y. Wei, H.Y. Huang, A low jitter delay-locked-loop applied for DDR4, in IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, (2013), pp. 98–101

  26. C. Wijenayake, Y. Xu, A. Madanayake et al., RF analog beamforming fan filters using CMOS all-pass time delay approximations. Circuits Syst. I Regul. Pap. IEEE Trans. 59(5), 1061–1073 (2012)

    Article  MathSciNet  Google Scholar 

  27. J.H. Zhan, K. Maurice, J. Duster, K.T. Kornegay, Analysis and design of negative impedance LC oscillators using bipolar transistors. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(11), 1461–1464 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61471119). The authors wish to thank Wei Li and Li Zhang for their technical instructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, W. Compact and Broadband Variable True-Time Delay Line with DLL-Based Delay-Time Control. Circuits Syst Signal Process 37, 1007–1027 (2018). https://doi.org/10.1007/s00034-017-0594-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0594-6

Keywords

Navigation