Skip to main content
Log in

Hardware Design for VLSI Implementation of Acoustic Feedback Canceller in Hearing Aids

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Acoustic feedback is one of the major issues associated with the hearing aid users which limits the maximum amount of gain available for amplification and degrades the sound quality. In this paper, partitioned time-domain block LMS (PTBLMS) algorithm is proposed for efficient hardware realization of acoustic feedback cancellers (AFCs) in hearing aids. A full-parallel and a folded structure is derived using the proposed PTBLMS algorithm. The folded structure utilizing the time multiplexing of convolution and correlation operation and performing them in one arithmetic unit enables better hardware utilization. A low-complexity design is employed for realization of power normalization unit (for calculating normalized convergence factor) which involves squaring and division operations. The theoretical analysis illustrates that the proposed AFC structures offer L times higher throughput rate and requires proportionately less hardware resource than the existing one where L is the block length. ASIC synthesis results reveal that the proposed folded structure involves nearly 79\(\%\) less area-delay product and 86\(\%\) less energy per sample compared to the existing structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Berkeman, ASIC implementation of a delayless acoustic echo canceller, Ph.D thesis, Department of Electroscience Lund University, Sweden (2002)

  2. C. Chen, J. Fan, X. Hu, Y. Hei, A low power high performance analog front-end circuit for 1V digital hearing aid SoC. Circuits Syst. Signal Process. 34(5), 1391–1404 (2015)

    Article  Google Scholar 

  3. L.-M. Chen, Z.-H. Yu, C.-Y. Chen, X.-Y. Hu, J. Fan, J. Yang, Y. Hei, A 1-V, 1.2-mA fully integrated SoC for digital hearing aids. Microelectron. J. 46(1), 12–19 (2015)

    Article  Google Scholar 

  4. S.Y. Cheng, J.B. Evans, Implementation of signal power estimation methods. IEEE Trans. Circuits Syst. II Analog Digit Signal Process. 44(3), 240–250 (1997)

    Article  Google Scholar 

  5. Y.F. Chiang, C.-W. Wei, Y.-L. Meng, Y.-W. Lin, S.-J. Jou, T.-S. Chang, Low complexity formant estimation adaptive feedback cancellation for hearing aids using pitch based processing. IEEE Trans. Audio Speech Lang. Process. 22(8), 1248–1259 (2014)

    Article  Google Scholar 

  6. J.R. Custodio, J. Goes, N. Paulino, J.P. Oliveira, E. Bruun, A 1.2-V 165-lspl \(\mu \)/W 0.29-mm\(^2\) multibit sigma-delta ADC for hearing aids using nonlinear DACs and with over 91 dB dynamic-range. IEEE Trans. Biomed. Circuits Syst. 7(3), 376–385 (2013)

    Article  Google Scholar 

  7. J.P. da Silva Cerqueira, S.A.P. Haddad, Design of a low-power adaptive LMS equalizer for hearing-aid applications, in Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS) (Lausanne, Switzerland, 2014), pp. 651–654

  8. P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 4th edn. (Springer, New York, 2013)

  9. P. Estermann, A. Kaelin, Feedback cancellation in hearing aids: results from using frequency-domain adaptive filters, in Proceedings of IEEE International Symposium on Circuits and Systems, vol. 2 (London, 1994), pp. 257–260

  10. A. Feuer, Performance analysis of the block least mean square algorithm. IEEE Trans. Circuits Syst. 32(9), 960–963 (1985)

    Article  MathSciNet  Google Scholar 

  11. A. Feuer, E. Weinstein, Convergence analysis of LMS filters with uncorrelated Gaussian data. IEEE Trans. Acoust. Speech Signal Process. 33(1), 222–230 (1985)

    Article  Google Scholar 

  12. M. Guo, S.H. Jensen, J. Jensen, Novel acoustic feedback cancellation approaches in hearing aid applications using probe noise and probe noise enhancement. IEEE Trans. Audio Speech Lang. Process. 20(9), 2549–2563 (2012)

    Article  Google Scholar 

  13. J. Hellgren, T. Lunner, S. Arlinger, Variations in the feedback of hearing aids. J. Acoust. Soc. 106(5), 2821–2833 (1999)

    Article  Google Scholar 

  14. J. Hellgren, Analysis of feedback cancellation in hearing aids with filtered-X LMS and the direct method of closed loop identification. IEEE Trans. Speech Audio Process. 10(2), 119–131 (2002)

    Article  Google Scholar 

  15. C.H.I. Kim, H. Soeleman, K. Roy, Ultra-low power DLMS adaptive filter for hearing aid applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 11(6), 1058–1067 (2002)

    Article  Google Scholar 

  16. M. Kongpoon, C. Chinrungrueng, A design of LMS with order adaptation for feedback echo cancellation in hearing aids, in Proceedings of IEEE International Biomedical Engineering Conference (CIBEC) (Cairo, Egypt, December 20–21 2012), pp. 81–86

  17. S.-C. Lai, C.-H. Liu, L.-Y. Wang, S.-H. Chen, K.-H. Chen, 11.25-ms-group-delay and low-complexity algorithm design of 18-band quasi-ANSI S1.11 1/3 octave digital filterbank for hearing aids. IEEE Trans. Circuits Syst. I 62(6), 1572–1581 (2015)

    Article  MathSciNet  Google Scholar 

  18. J. Lee, H.-C. Huang, On the step-size bounds of frequency-domain block LMS adaptive filters. IEEE Signal Process. Lett. 20(1), 23–26 (2013)

    Article  Google Scholar 

  19. C.-W. Liu, K.-C. Chang, M.-H. Chuang, C.-H. Lin, 10-ms 18-band quasi-ANSI S1.11 1/3-octave filter bank for digital hearing aids. IEEE Trans. Circuits Syst. I 60(3), 638–649 (2013)

    Article  MathSciNet  Google Scholar 

  20. G. Ma, F. Gran, F. Jacobsen, F.T. Agerkvist, Adaptive feedback cancellation with band-limited LPC vocoder in digital hearing aids. IEEE Trans. Audio Speech Lang. Process. 19(4), 677–687 (2011)

    Article  Google Scholar 

  21. B.K. Mohanty, G. Singh, G. Panda, Hardware design for VLSI implementation of FxLMS-and FsLMS-based active noise controllers. Circuits Syst. Signal Process. 36(2), 447–473 (2016)

    Article  Google Scholar 

  22. C.R.C. Nakagawa, S. Nordholm, W.Y. Yan, Analysis of two microphone method for feedback cancellation. IEEE Signal Process. Lett. 22(1), 35–39 (2015)

    Article  Google Scholar 

  23. S. Narayan, A. Peterson, M.J. Narasimha, Transform domain LMS algorithm. IEEE Trans. Acoust. Speech Signal Process. 31(3), 609–615 (1983)

    Article  Google Scholar 

  24. K. Ngo, T. van Waterschoot, M.G. Christensen, M. Moonen, S.H. Jensen, Improved prediction error filters for adaptive feedback cancellation in hearing aids. Signal Process. 93(11), 3062–3075 (2013)

    Article  Google Scholar 

  25. J. Noh, D. Lee, J.-G. Jo, C. Yoo, A class-D amplifier with pulse code modulated (PCM) digital input for digital hearing aid. IEEE J. Solid State Circuit 48(2), 465–472 (2013)

    Article  Google Scholar 

  26. P. Pracný, I.H.H. Jrgensen, E. Bruun, System-level power optimization of digital audio back end for hearing aids. Circuits Syst. Signal Process. 36(6), 2441–2458 (2017)

    Article  MathSciNet  Google Scholar 

  27. K. Ryoo, M. Chilukuri, S. Jung, A low power and low noise preamplifier circuit for hearing aid devices, in Proceedings of IEEE Dallas Circuits and Systems Conference (DCAS) (Arlington, TX, USA, 2016), pp. 1–4

  28. W. Shenming, W. Suntiamorntut, N. Jindapetch, J. Qiufan, Scheduling and resources sharing technique for adaptive LMS filter, in Proceedings of 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (Khon Kaen, Thailand, 2011), pp. 114–117

  29. B.-W. Shi, C.-C. Tsai, T.-S. Chang, Low power acoustic feedback cancellation for hearing aids, in VLSI/CAD, Citeseer (2008)

  30. A. Spriet, G. Rombouts, M. Moonen, J. Wouters, Adaptive feedback cancellation in hearing aids. J. Frankl. Inst. 343, 545–573 (2006)

    Article  MATH  Google Scholar 

  31. C.-W. Wei, S.-J. Su, T.-S. Chang, S.-J. Jou, Sub \(\mu \)W noise reduction for CIC hearing aids. IEEE Trans. VLSI Syt. 20(5), 937–947 (2012)

    Article  Google Scholar 

  32. C.-W. Wei, C.-C. Tsai, Y. FanJiang, T.-S. Chang, S.-J. Jou, Analysis and implementation of low-power perceptual multiband noise reduction for the hearing aids application. IET Circuits Devices Syst. 8(6), 516–525 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasundhara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasundhara, Mohanty, B.K., Panda, G. et al. Hardware Design for VLSI Implementation of Acoustic Feedback Canceller in Hearing Aids. Circuits Syst Signal Process 37, 1383–1406 (2018). https://doi.org/10.1007/s00034-017-0619-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0619-1

Keywords

Navigation