Skip to main content
Log in

New Lyapunov–Krasovskii Functional for Mixed-Delay-Dependent Stability of Uncertain Linear Neutral Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The robust stability in a class of uncertain linear neutral systems with time-varying delays is studied. Through choosing multiple integral Lyapunov terms and using some novel integral inequalities, a much tighter estimation on derivative of Lyapunov–Krasovskii (L–K) functional is presented and two stability criteria are expressed in terms of linear matrix inequalities, in which those previously ignored information can be considered. In particular, the proposed Lyapunov technique can effectively consider the interconnection between neutral delay and state one. Finally, two numerical examples with comparing results can show the application area and benefits of the proposed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alaviani, Delay-dependent exponential stability of linear time-varying neutral delay systems. IFAC Pap. OnLine 48, 177–179 (2015)

    Article  Google Scholar 

  2. P. Balasubramaniam, R. Krishnasamy, Robust exponential stabilization results for impulsive neutral time-delay systems with sector-bounded nonlinearity. Circuits Syst. Signal Process. 33(9), 2741–2759 (2014)

    Article  MathSciNet  Google Scholar 

  3. Y.G. Chen, W. Qian, S.M. Fei, Improved robust stability conditions for uncertain neutral systems with discrete and distributed delays. J. Frankl. Inst. 352, 2634–2645 (2015)

    Article  MathSciNet  Google Scholar 

  4. J. Cheng, H. Zhu, S.M. Zhong, G. Li, Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations. Appl. Math. Comput. 219, 7741–7753 (2013)

    MathSciNet  MATH  Google Scholar 

  5. H. Chen, L. Wang, New result on exponential stability for neutral stochastic linear system with time-varying delay. Appl. Math. Comput. 239, 320–325 (2015)

    MathSciNet  MATH  Google Scholar 

  6. G.X. Chen, Z.R. Xiang, M.S. Mahmoud, Stability and \(H_\infty \) performance analysis of switched stochastic neutral systems. Circuits Syst. Signal Process. 32(1), 387–400 (2013)

    Article  MathSciNet  Google Scholar 

  7. L. Ding, Y. He, M. Wu, C. Ning, Improved mixed-delay-dependent asymptotic stability criteria for neutral systems. IET Control Theory Appl. 9, 2180–2187 (2015)

    Article  MathSciNet  Google Scholar 

  8. W. Duan, B. Du, J. You, Improved robust stability criteria for a class of Lur’e systems with interval time-varying delays and sector-bounded nonlinearity. Int. J. Syst. Sci. 46, 944–954 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Z.J. Fu, K. Ren, J.G. Shu, X.M. Sun et al., Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans. Parallel Distrib. Syst. 27(9), 2546–2559 (2016)

    Article  Google Scholar 

  10. B. Gu, Victor S. Sheng, K.Y. Tay, W. Romano, Incremental support vector learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1403–1416 (2015)

    Article  MathSciNet  Google Scholar 

  11. B.Z. Guo, H.P. Ju, Y.J. Liu, Results on stability of linear systems with time varying delay. IET Control Theory Appl. doi:10.1049/iet-cta.2016.0634

  12. J.J. Hui, X.Y. Kong, H.X. Zhang, X. Zhou, Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 281, 74–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Q.L. Han, Improved stability criteria and controller design for linear neutral systems. Automatica 45, 1948–1952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. C.C. Hua, S.S. Wu, X. Yang, X.P. Guan, Stability analysis of time-delay systems via free-matrix-based double integral inequality. Int. J. Syst. Sci. 48(2), 257–263 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Kwon, S. Lee, H. Ju, New approaches on stability criteria for neural networks with interval time-varying delays. Appl. Math. Comput. 218, 9953–9964 (2012)

    MathSciNet  MATH  Google Scholar 

  16. P. Liu, Improved results on delay-interval-dependent robust stability criteria for uncertain neutral-type systems with time-varying delays. ISA Trans. 60, 53–66 (2016)

    Article  Google Scholar 

  17. Y.J. Liu, S.M. Lee, O.M. Kwon, JuH Park, Delay-dependent exponential stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations. J. Frankl. Inst. 350(10), 3313–3327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. R.Q. Lu, H. Wu, J. Bai, New delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. J. Frankl. Inst. 351, 1386–1399 (2014)

    Article  MathSciNet  Google Scholar 

  19. Y. Liu, W. Ma, M. Mahmoud, S. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties. Appl. Math. Model. 39, 3164–3174 (2015)

    Article  MathSciNet  Google Scholar 

  20. S. Lakshmanan, T. Senthilkumar, M. Balasubraman, Improved results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations. Appl. Math. Model. 35, 5355–5368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. L.N. Liu, Q.X. Zhu, Mean square stability of two classes of theta method for neutral stochastic differential delay equations. J. Comput. Appl. Math. 305(15), 55–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. S.L. Liu, Z.R. Xiang, Exponential \(H_\infty \) output tracking control for switched neutral system with time-varying delay and nonlinear perturbations. Circuits Syst. Signal Process. 32(1), 103–121 (2013)

    Article  MathSciNet  Google Scholar 

  23. P.L. Liu, Robust absolute stability criteria for uncertain Lurie interval time-varying delay systems of neutral type. ISA Trans. 60, 2–11 (2016)

    Article  Google Scholar 

  24. Y. Liu, S. Lee, O. Kwon, J.H. Park, Robust delay-dependent stability criteria for time-varying delayed Lur’e systems of neutral type. Circuits Syst. Signal Process. 34, 1481–1497 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Li, T. Wang, A.G. Song, S.M. Fei, Delay-derivative-dependent stability for delayed neural networks with unbounded distributed delay. IEEE Trans. Neural Netw. 21, 1365–1371 (2010)

    Article  Google Scholar 

  26. T. Li, A.G. Song, S.M. Fei, Robust stability of stochastic Cohen–Grossberg neural networks with mixed time-varying delays. Neurocomputing 73, 542–551 (2009)

    Article  Google Scholar 

  27. M. Obradovic, M. Milosevic, Stability of a class of neutral stochastic differential equations with unbounded delay and Markovian switching and the Euler–Maruyama method. J. Comput. Appl. Math. 309(1), 244–266 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Park, O. Kwon, J.H. Park, S. Lee, Stability of time-delay systems via Wirtinger-based double integral inequality. Automatica 55, 204–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Park, W. Lee, S.Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Frankl. Inst. 352(4), 1378–1396 (2016)

    Article  MathSciNet  Google Scholar 

  30. F. Qiu, B.T. Cui, Y. Ji, Further results on robust stability of neutral system with mixed time-varying delays and nonlinear perturbations. Nonlinear Anal. Real World Appl. 11, 895–906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Qiu, J.D. Cao, T. Hayat, Delay-dependent stability of neutral system with mixed time-varying delays and nonlinear perturbations using delay-dividing approach. Cogn. Neurodyn. 9, 75–83 (2015)

    Article  Google Scholar 

  32. F. Qiu, B.T. Cui, A delay-dividing approach to stability of neutral system with mixed delays and nonlinear perturbations. Appl. Math. Model. 34, 3701–3707 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Ren, Z. Feng, G. Sun, Improved stability conditions for uncertain neutral-type systems with time-varying delays. Int. J. Syst. Sci. 47, 1982–1993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Raja, Q. Zhu, S. Senthilraj, R. Samidurai, Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects. Appl. Math. Comput. 266, 1050–1069 (2015)

    MathSciNet  Google Scholar 

  35. Y.J. Sun, F.H. Gu, Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring. Int. J. Sens. Netw. 23(4), 258–264 (2017)

    Article  Google Scholar 

  36. J. Sun, G.P. Liu, J. Chen, D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 46, 466–470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9), 2860–2866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. M.Q. Shen, S. Yan, G.M. Zhang, A new approach to event-triggered static output feedback control of networked control systems. ISA Trans. 65, 468–474 (2016)

    Article  Google Scholar 

  39. Q. Tian, S.C. Chen, Cross-heterogeneous-database age estimation through correlation representation learning. Neurocomputing 238, 286–295 (2017)

    Article  Google Scholar 

  40. W.Q. Wang, S.K. Nguang, S.M. Zhong, F. Liu, Delay-dependent stability criteria for uncertain neutral system with time-varying delays and nonlinear perturbations. Circuits Syst. Signal Process. 33(9), 2719–2740 (2014)

    Article  Google Scholar 

  41. Y. Wang, Y. Xue, X. Zhang, Less conservative robust absolute stability criteria for uncertain neutral-type Lur’e systems with time-varying delays. J. Frankl. Inst. 353, 816–833 (2016)

    Article  MathSciNet  Google Scholar 

  42. Z.R. Xiang, Y.N. Sun, Q. Chen, Stabilization for a class of switched neutral systems under asynchronous switching. Trans. Inst. Meas. Control 34(7), 793–801 (2012)

    Article  Google Scholar 

  43. L. Xiong, H. Zhang, Y. Li, Improved stability and \(H_\infty \) performance for neutral systems with uncertain Markovian jumping. Nonlinear Anal. Hybrid Syst. 19, 13–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Z.R. Xiang, Y.N. Sun, Q.W. Chen, Stabilization for a class of switched neutral systems under asynchronous switching. Trans. Inst. Meas. Control 34(7), 793–801 (2012)

    Article  Google Scholar 

  45. Y. Yu, Global exponential convergence for a class of neutral functional differential equations with proportional delays. Math. Methods Appl. Sci. (2016). doi:10.1002/mma.3880

  46. D. Yue, Q.L. Han, A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model. IEEE Trans. Circuits Syst. II 51, 685–689 (2004)

    Article  Google Scholar 

  47. J. Zhang, J. Tang, T.B. Wang, F. Chen, Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. Int. J. Sens. Netw. 23(4), 248–257 (2017)

    Article  Google Scholar 

  48. H. Zeng, Y. He, M. Wu, J.H. She, New results on stability analysis for systems with discrete distributed delay. Automatica 63, 189–192 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. C.K. Zhang, Y. He, L. Jiang, M. Wu, An improved summation inequality to discrete-time systems with time-varying delay. Automatica 74, 10–15 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. C.K. Zhang, Y. He, L. Jiang, M. Wu, H.B. Zeng, Stability analysis of systems with time-varying delay via relaxed integral inequalities. Syst. Control Lett. 92, 52–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 61473079, 61473115), Jiangsu Natural Science Foundation (Nos. BK20171419, BK20140836, BK20150888), Natural Science Foundation for Jiangsu’s Universities (No. 15KJB12004), Fundamental Research Fund for Central Universities (Nos. NS2016030, NJ20160024), and Youth Science and Technology Innovation Foundation of Nanjing Forestry University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Wang.

Appendix

Appendix

In what follows, some lemmas will be presented for the proof procedure of Theorems 12.

Lemma 1

[50] For \(d(t)\in [0,d]\), a symmetric matrix \(R>0\) and any matrix \(S_1\) satisfying \(\left[ \begin{array}{cc} R_1 &{}\quad S_1 \\ *&{}\quad R_1 \end{array}\right] \ge 0\) with \(R_1=\mathrm {diag}\{R,3R,5R\}\), the following inequality can be true

$$\begin{aligned}&-\int _{t-d(t)}^{t} \dot{x}(s)\hbox {d}s -\int _{t-d}^{t-d(t)}\dot{x}(s)\hbox {d}s \\&\le -\frac{1}{d}\zeta ^\mathrm{T}(t)\left[ \begin{array}{cc} E_1 \\ E_2\end{array}\right] ^\mathrm{T}\left( \left[ \begin{array}{cc} R_1 &{}\quad S_1 \\ *&{} R_1 \end{array}\right] +\left[ \begin{array}{cc} \frac{d-d(t)}{d}T &{}\quad 0 \\ *&{} \frac{d(t)}{d}T \end{array}\right] \right) \left[ \begin{array}{cc} E_1 \\ E_2 \end{array}\right] \zeta (t), \end{aligned}$$

where

$$\begin{aligned} \zeta ^\mathrm{T}(t)= & {} \Big [x^\mathrm{T}(t)~~x^\mathrm{T}(t-d(t))~~x^\mathrm{T}(t-d) ~~\varphi ^\mathrm{T}(t)~~\varrho ^\mathrm{T}(t)~~\nu ^\mathrm{T}(t)~~\omega ^\mathrm{T}(t)\Big ];\\ E_1= & {} \left[ \begin{array}{cc} e_1-e_2 \\ e_1+e_2-2e_4 \\ e_1-e_2+6e_4-12e_6 \end{array}\right] ,~~E_2=\left[ \begin{array}{cc} e_2-e_3 \\ e_2+e_3-2e_5 \\ e_2-e_3+6e_5-12e_7 \end{array}\right] ;\\ e_i= & {} \Big [0_{i-1}~~~I_n~~~0_{7-i}\Big ]~(1\le i\le 7),~~~ T=R_1-S_1^\mathrm{T}R_1^{-1}S_1; \\ \varphi (t)= & {} \frac{1}{d(t)}\int _{t-d(t)}^{t}x(s)\hbox {d}s,~~\nu (t)=\frac{2}{d^2(t)}\int _{t-d(t)}^{t}\int _{t-d(t)}^{s} x(u)\hbox {d}u\hbox {d}s; \\ \varrho (t)= & {} \frac{1}{d-{d}(t)}\int _{t-d}^{t-d(t)}x(s)\hbox {d}s,~~ \omega (t)=\frac{2}{(d-{d}(t))^2}\int _{t-d}^{t-d(t)}\int _{t-d}^{s} x(u)\hbox {d}u\hbox {d}s.~~ \end{aligned}$$

Lemma 2

[28, 50] For an any constant matrix \(M>0\), the following inequalities hold for all continuously differentiable function \(\varphi \) in \([a,b]\rightarrow \mathbf{R}^n\):

$$\begin{aligned}&-(b-a)\int _{a}^{b} \varphi ^\mathrm{T}(s)M\varphi (s)\hbox {d}s \le -\left( \int _{a}^{b} \varphi (s)\hbox {d}s\right) ^\mathrm{T} M\left( \int _{a}^{b} \varphi (s)\hbox {d}s\right) -3\Theta ^\mathrm{T}M\Theta , \\&-\frac{b^2-a^2}{2}\int _{a}^{b}\int _{t+\theta }^{t} \varphi ^\mathrm{T}(s)M\varphi (s)\hbox {d}s\hbox {d}\theta \\&\le -\left( \int _{a}^{b}\int _{t+\theta }^{t} \varphi (s)\hbox {d}s\hbox {d}\theta \right) ^\mathrm{T} M\left( \int _{a}^{b}\int _{t+\theta }^{t} \varphi (s)\hbox {d}s\hbox {d}\theta \right) ,\\&-\frac{b^3-a^3}{6}\int _{-b}^{-a}\int _{\varrho }^{0}\int _{t+\theta }^t \varphi ^\mathrm{T}(s)M\varphi (s)\hbox {d}s\hbox {d}\theta \hbox {d}\varrho \\&\le -\left( \int _{-b}^{-a}\int _{\varrho }^{0}\int _{t+\theta }^t \varphi (s)\hbox {d}s\hbox {d}\theta \hbox {d}\varrho \right) ^\mathrm{T} M\left( \int _{-b}^{-a}\int _{\varrho }^{0}\int _{t+\theta }^t \varphi (s)\hbox {d}s\hbox {d}\theta \hbox {d}\varrho \right) , \end{aligned}$$

where \(\Theta =\int _{a}^{b} {\varphi }(s)\hbox {d}s-\frac{2}{b-a}\int _{a}^{b}\int _{a}^{s} {\varphi }(u)\hbox {d}u\hbox {d}s\).

Lemma 3

[28] For an any constant matrix \(M>0\), the following inequality holds for all continuously differentiable function \(\varphi \) in \([a,b]\rightarrow \mathbf{R}^n\):

$$\begin{aligned}&-\frac{(b-a)^2}{2}\int _{a}^{b}\int _{a}^{s}{\varphi }^\mathrm{T}(u)M{\varphi }(u)\hbox {d}u\hbox {d}s \\&\le -\left( \int _{a}^{b}\int _{a}^{s} {\varphi }(u)\hbox {d}u\hbox {d}s\right) ^\mathrm{T} M\left( \int _{a}^{b}\int _{a}^{s} {\varphi }(u)\hbox {d}u\hbox {d}s\right) -2\Theta ^\mathrm{T}M\Theta , \end{aligned}$$

where \(\Theta =\int _{a}^{b}\int _{a}^{s} {\varphi }(u)\hbox {d}u\hbox {d}s-\frac{3}{b-a}\int _{a}^{b}\int _{a}^{s}\int _{a}^{u} {\varphi }(v)\hbox {d}v\hbox {d}u\hbox {d}s\).

Lemma 4

[29] For vector \(\omega \), real scalars \(a\le b\), symmetric matrix \(R>0\) such that the integration is well defined, then the following inequality holds,

$$\begin{aligned} (b-a)\int _{a}^{b}\dot{\omega }^\mathrm{T}(s) R\dot{\omega }(s)\hbox {d}s\ge \chi ^\mathrm{T}_1R\chi _1+3\chi ^\mathrm{T}_2R\chi _2+5\chi ^\mathrm{T}_3R\chi _3, \end{aligned}$$

where

$$\begin{aligned} \chi _1= & {} \omega (b)-\omega (a),~~\chi _2=\omega (b)+\omega (a)-\frac{2}{b-a}\int _{a}^{b}\omega (s)\hbox {d}s,\\ \chi _3= & {} \omega (b)-\omega (a)+\frac{6}{b-a}\int _{a}^{b}\omega (s)\hbox {d}s-\frac{12}{(b-a)^2}\int _{a}^{b}\int _{s}^{b}\omega (\theta )\hbox {d}\theta \hbox {d}s. \end{aligned}$$

As an extended case of Lemma 2 in [25], we can derive the following Lemma easily.

Lemma 5

[25] Suppose that \(\Omega ,\Xi _{ij},\Xi _{mn}~(i,m=1,2,3,4;j,n=1,2)\) are the constant matrices of appropriate dimensions, \(\alpha \in [0,1]\), \(\beta \in [0,1]\), \(\gamma \in [0,1]\), and \(\delta \in [0,1]\), then

$$\begin{aligned}&\Omega +\big [\alpha \Xi _{11}+(1-\alpha )\Xi _{12}\big ]+\big [\beta \Xi _{21}+(1-\beta )\Xi _{22}\big ]\\&+\big [\gamma \Xi _{31}+(1-\gamma )\Xi _{32}\big ]+\big [\delta \Xi _{41}+(1-\delta )\Xi _{42}\big ]<0 \nonumber \end{aligned}$$

holds, if and only if the following inequalities hold simultaneously,

$$\begin{aligned}&\Omega +\Xi _{ij}+\Xi _{mn}<0~~(i,m=1,2,3,4;j,n=1,2).\nonumber \end{aligned}$$

Lemma 6

[26, 38] Let \(I-G^\mathrm{T}G>0\) define the set \(\Upsilon =\big \{\Delta (t)=\Sigma (t)[I-G\Sigma (t)]^{-1}, \Sigma ^\mathrm{T}(t)\Sigma (t)\le I \big \}\), for given matrices HJ, and R of appropriate dimensions and symmetric one H, then \(H+J\Delta (t)R+R^\mathrm{T}\Delta ^\mathrm{T}(t)J^\mathrm{T}<0\), iff there exists \(\rho >0\) such that

$$\begin{aligned}&H+\left[ \begin{array}{cc} \rho ^{-1}R \\ \rho J^\mathrm{T} \end{array}\right] ^\mathrm{T}\left[ \begin{array}{cc} I &{}\quad -G\\ -G^\mathrm{T} &{}\quad I \end{array}\right] ^{-1}\left[ \begin{array}{cc} \rho ^{-1}R \\ \rho J^\mathrm{T} \end{array}\right] <0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, T., Zhang, G. et al. New Lyapunov–Krasovskii Functional for Mixed-Delay-Dependent Stability of Uncertain Linear Neutral Systems. Circuits Syst Signal Process 37, 1825–1845 (2018). https://doi.org/10.1007/s00034-017-0635-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0635-1

Keywords

Navigation