Skip to main content
Log in

Design of 0.35-ps RMS Jitter 4.4–5.6-GHz Frequency Synthesizer with Adaptive Frequency Calibration Using 55-nm CMOS Technology

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper demonstrates the design and implementation of a 5-GHz frequency synthesizer using 55-nm complementary metal-oxide semiconductor technology. The proposed synthesizer achieves an ultra-low 0.35-ps jitter with a high-resolution adaptive frequency calibration scheme that automatically chooses frequency-tuning curves and improves calibration accuracy. The proposed synthesizer employs a high-Q LC voltage-controlled oscillator, constant bandwidth, low, and even \(K_{\mathrm{VCO}}\) technique using thermometer-weighted capacitor calibration, a low-power divider, and a charge-pump (CP) circuit to achieve low jitter. The oscillator comprises a modified digitally controlled capacitor and varactor array, which extend the tuning range and minimize the phase noise. A matched differential CP is adopted to reduce reference spurs and phase-noise performance. The proposed frequency synthesizer achieves an output frequency of 4.4–5.6 GHz with a chip area of \(0.33\hbox { mm}^{2}\). The power consumption is 20 mW from a 1.2-V supply at 5 GHz, and the reference spur is −67.99 dBc. The measured root mean-square random jitter and phase noise are 0.35 ps and −110.04 dBc/Hz at 1 MHz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A. Aktas, M. Ismail, CMOS PLL calibration techniques. IEEE Circuits Devices Mag. 20(5), 6–11 (2004). doi:10.1109/MCD.2004.1343243

    Article  Google Scholar 

  2. S. Broussev, T. Lehtonen, N. Tchamov, A wideband low phase-noise LC-VCO with programmable \(K_{{ VCO}}\). IEEE Microwave Wirel. Compon. Lett. 17(4), 274–276 (2007). doi:10.1109/LMWC.2007.892966

    Article  Google Scholar 

  3. D. Cai, H. Fu, J. Ren, W. Li, N. Li, H. Yu, K. Yeo, A dividerless PLL with low power and low reference spur by aperture-phase detector and phase-to-analog converter. IEEE Trans. Circuits Syst.-I, Regul. Pap. 60(1), 37–50 (2013). doi:10.1109/TCSI.2012.2215751

    Article  MathSciNet  Google Scholar 

  4. Z. Cao, Y. Li, S. Yan, A 0.4ps-rms-jitter 1–3GHz ring-oscillator PLL using phase-noise pre-amplification. IEEE J. Solid-State Circuits 43(9), 2079–2089 (2008). doi:10.1109/JSSC.2008.2001873

    Article  Google Scholar 

  5. X. Gao, E. Klumperink, G. Socci, M. Bohsali, B. Nauta, Spur reduction techniques for phase-locked loops exploiting a sub-sampling phase detector. IEEE J. Solid-State Circuits 45(9), 1809–1821 (2010). doi:10.1109/JSSC.2010.2053094

    Article  Google Scholar 

  6. X. Gao, E. Klumperink, P. Geraedts, B. Nauta, Jitter analysis and a benchmarking figure-of-merit for phase-locked loops. IEEE Trans. Circuits Syst.-II, Express Br. 56(2), 117–121 (2009). doi:10.1109/TCSII.2008.2010189

    Article  Google Scholar 

  7. D. Huang, W. Li, J. Zhou, N. Li, J. Chen, A frequency synthesizer with optimally coupled QVCO and harmonic-rejection SSBmixer for multi-standard wireless receiver. IEEE J. Solid-State Circuits 46(6), 1307–1320 (2011). doi:10.1109/JSSC.2011.2124970

    Article  Google Scholar 

  8. T. Jang, X. Nan, F. Liu, J. Shin, H. Ryu, J. Kim, T. Kim, J. Park, H. Park, A \(0.026 \text{mm}^{2}\) 5.3mW 32-to-2000 MHz digital fractional-N phase locked-loop using a phase-interpolating phase-to-digital converter. in IEEE International Solid-State Circuits Conference (ISSCC), pp. 254–255 (2013)

  9. J. Kim, J. Shin, S. Kim, H. Shin, A wide-band CMOS LC VCO with linearized coarse tuning characteristics. IEEE Trans. Circuits Syst.-II, Express Br. 55(5), 399–403 (2008). doi:10.1109/TCSII.2007.914896

    Article  Google Scholar 

  10. M. Kondou, A. Matsuda, H. Yamazaki, O. Kobayashi, A \(0.3\text{ mm }^{2}\) 90-to-770 MHz fractional-N synthesizer for a digital TV tuner. in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, vol 248, (2010)

  11. J . Lee, K. Kim, J. Lee, T. Jang, S. Cho, A 480-MHz to 1-GHz sub-picosecond clock generator with a fast and accurate automatic frequency calibration in 0.13-\(\mu \text{ m }\) CMOS. in IEEE Asian Solid-State Circuits Conference, pp. 67–70 (2007)

  12. C. Lee, L. Kabalican, Y. Ge et al., A 2.7GHz to 7GHz fractional-N LC-PLL utilizing multi-metal layer SoC technology in 28nm CMOS. IEEE J. Solid-State Circuits 50(4), 1–9 (2015). doi:10.1109/JSSC.2014.2371136

    Article  Google Scholar 

  13. M. Li, S. Zhang, S. Wang, R. Zhou, A fully-integrated CMOS UWB transceiver for ultra-low-power short-range application. Int. J. Circuit Theory Appl. 39, 783–790 (2011)

    Article  Google Scholar 

  14. T. Lin, Y. Lai, An agile VCO frequency calibration technique for a 10-GHz CMOS PLL. IEEE J. Solid-State Circuits 42(2), 340–349 (2007). doi:10.1109/JSSC.2006.889360

    Article  MathSciNet  Google Scholar 

  15. J. Liu, S. Jeon, T. Jang, D. Kim, J. Kim, J. Park, H. Park, A 0.8V, sub-mW, varactor-tuning ring-oscillator-based clock generator in 32 nm CMOS. in IEEE Asian Solid-State Circuits Conference, pp. 337–340 (2011)

  16. L. Lu, J. Chen, Y. Lu, H. Min, Z. Tang, An 18-mW 1.175-2-GHz frequency synthesizer with constant bandwidth for DVB-tuners. IEEE Trans. Microw. Theory Tech. 57(4), 928–937 (2009). doi:10.1109/TMTT.2009.2014449

    Article  Google Scholar 

  17. S. Min, T. Copani, S. Kiaei et al., A 90-nm CMOS 5-GHz ring-oscillator PLL with delay-discriminator-based active phase-noise cancellation. IEEE J. Solid-State Circuits 48(5), 1151–1160 (2013). doi:10.1109/JSSC.2013.2252515

    Article  Google Scholar 

  18. Y. Moon, Y. Roh, C. Jeong, C. Yoo, A 4.39-5.26 GHz LC-tank CMOS voltage-controlled oscillator with small VCO-gain variation. IEEE Microw. Wirel. Compon. Lett. 19(8), 524–526 (2009). doi:10.1109/LMWC.2009.2024846

    Article  Google Scholar 

  19. Y. Pan, Y. Huang, Z. Hong, A 3–5GHz low-phase noise fractional-N frequency synthesizer with AFC for GSM/PCS/DCS/WCDMA transceivers. IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT) 30(2), 53–56 (2011)

    Google Scholar 

  20. J. Shin, H. Shin, A 1.9-3.8GHz fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency. IEEE J. Solid-State Circuits 47(3), 665–675 (2012). doi:10.1109/JSSC.2011.2179733

    Article  Google Scholar 

  21. J. Shu, Z. Li, A fast AFC loop with low power consumption, low phase noise LC VCO. in International Conference on Multimedia Technology (ICMT), pp. 1580–1587 (2013)

  22. K. Sogo, A. Toya, T. Kikkawa, A ring-VCO-based sub-sampling PLL CMOS circuit with -119dBc/Hz phase noise and 0.73ps. in Proceedings of European Solid-State Circuits Conference (ESSCIRC), pp. 253–256 (2012)

  23. M. Sugawara, S. Choi, D. Wood, Ultra-high-definition television (Rec. ITU-R BT.2020): a generational leap in the evolution of television [standards in a nutshell]. IEEE Signal Process. Mag. 31(3), 170–174 (2014)

    Article  Google Scholar 

  24. Y. Sun, J. Qiao, X. Yu, W. Rhee, B. Park, Z. Wang, A continuously tunable hybrid LC-VCO PLL with mixed-mode dual-path control and Bi-level \(\Delta -\Sigma \) modulated coarse tuning. IEEE Trans. Circuits Syst.-I, Regul. Pap. 58(9), 2149–2158 (2011). doi:10.1109/TCSI.2011.2114735

    Article  MathSciNet  Google Scholar 

  25. T. Wu, P. Hanumolu, K. Mayaram, U. Moon, Method for a constant loop bandwidth in LC_VCO PLL frequency synthesizers. IEEE J. Solid-State Circuits 44(2), 427–435 (2009). doi:10.1109/JSSC.2008.2010792

    Article  Google Scholar 

  26. Z. Xu, Q. Gu, Y. Wu, H. Jian, M. Chang, A 70–78-GHz integrated CMOS frequency synthesizer for \(W\)-band satellite communications. IEEE Trans. Microw. Theory Tech. 59(12), 3206–3218 (2011). doi:10.1109/TMTT.2011.2168972

    Article  Google Scholar 

  27. Y. You, D. Huang, J. Chen, S. Chakraborty, A 12GHz 67% tuning range 0.37ps \({\mathit{RJ}_{{}rms}}\) PLL with LC-VCO temperature compensation scheme in 0.13um CMOS. in IEEE Radio Frequency Integrated Circuit Symposium (RFIC), pp. 101–104. (2014) doi:10.1109/RFIC.2014.6851669

  28. B. Zhao, Y. Lian, H. Yang, A low-power fast-settling bond-wire frequency synthesizer with a dynamic-bandwidth scheme. IEEE Trans. Circuits Syst.-I, Regul. Pap. 60(5), 1188–1199 (2013). doi:10.1109/TCSI.2013.2249177

    Article  Google Scholar 

  29. J. Zhou, W. Li, D. Huang et al., A 0.4-6GHz frequency synthesizer using dual-mode VCO for software-defined radio. IEEE Trans. Microw. Theory Tech. 61(2), 848–859 (2013). doi:10.1109/TMTT.2012.2233493

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61474134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Zhao, L. & Zhang, F. Design of 0.35-ps RMS Jitter 4.4–5.6-GHz Frequency Synthesizer with Adaptive Frequency Calibration Using 55-nm CMOS Technology. Circuits Syst Signal Process 37, 1479–1504 (2018). https://doi.org/10.1007/s00034-017-0645-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0645-z

Keywords

Navigation