Skip to main content
Log in

Directional Statistics Approach Based on Instantaneous Rotational Parameters of Tri-axial Trajectories for Footstep Detection

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Polarization of tri-axial signals is defined using instantaneous rotational characteristics of the three-dimensional (3D) trajectory. We propose a rotational model to parameterize the time evolution of the 3D trajectory as a sequence of scaled rotations. Using this model, the velocity-to-rotation transform is defined to estimate the eigenangle, eigenaxis and orientation quaternion that quantify the instantaneous rotational parameters of the trajectory. These rotational parameters correspond to p-dimensional directional random vectors (DRVs). We propose two approaches to discriminate between the presence and absence of an elliptically polarized trajectory generated by human footsteps. In the first approach, we fit a von Mises–Fisher probability density function to the DRVs and estimate the concentration parameter. In the second approach, we employ the Kullback–Leibler divergence between the estimated nonparametric hyperspherical probability densities. The detection performance of the proposed metrics is shown to achieve an accuracy of \(97\%\) compared to existing approaches of \(82\%\) for footstep signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Albusac, J. Castro-Schez, L. Lopez-Lopez, D. Vallejo, L. Jimenez-Linares, A supervised learning approach to automate the acquisition of knowledge in surveillance systems. Signal Process. 89(12), 2400–2414 (2009)

    Article  MATH  Google Scholar 

  2. R. Bahrouna, O. Michelb, F. Frassatia, M. Carmonaa, J. Lacoumea, New algorithm for footstep localization using seismic sensors in an indoor environment. J. Sound Vib. 333(3), 1046–1066 (2014)

    Article  Google Scholar 

  3. N.L. Bihan, P.O. Amblard, Detection and estimation of Gaussian proper quaternion valued random processes. in Proceedings of IMA Conference on Mathematics (2006)

  4. N.L. Bihan, J. Mars, Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process. 84(7), 1177–1199 (2004)

    Article  MATH  Google Scholar 

  5. C.H. Chapman, Fundamentals of Seismic Wave Propagation (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  6. J.P. Claassen, Robust bearing estimation for three-component stations. Pure Appl. Geophys. J. 158(1–2), 349–374 (2001)

    Article  Google Scholar 

  7. I.S. Dhillon, S. Sra, Modelling Data Using Directional Distributions. Technical Report, The University of Texas at Austin (2003)

  8. D. Donno, A. Nehorai, U. Spagnolini, Seismic velocity and polarization estimation for wavefield separation. IEEE Trans. Signal Process. 56, 4794–4809 (2008)

    Article  MathSciNet  Google Scholar 

  9. T. Gandhi, R. Chang, M.M. Trivedi, Video and seismic sensor-based structural health monitoring: framework, algorithms, and implementation. IEEE Trans. Intell. Transp. Syst. 8, 169–180 (2007)

    Article  Google Scholar 

  10. P. Ginzberg, A. Walden, Testing for quaternion propriety. IEEE Trans. Signal Process. 59(7), 3025–3034 (2011)

    Article  MathSciNet  Google Scholar 

  11. R. Goldman, Understanding quaternions. Gr. Models 73(2), 21–49 (2011)

    Article  Google Scholar 

  12. S. Greenhalgh, I.M. Mason, B. Zhou, An analytical treatment of single station triaxial seismic direction finding. J. Geophys. Eng. 2, 8–15 (1995)

    Article  Google Scholar 

  13. A.J. Hanson, Visualising Quaternions, The Morgan Kaufmann Series in Interactive 3D Technology (Morgan Kaufmann, 2006)

  14. V. Hari, A. Premkumar, X. Zhong, A decoupled approach for near-field source localization using a single acoustic vector sensor. Circuits Syst. Signal Process. 32, 843–859 (2013)

    Article  MathSciNet  Google Scholar 

  15. K.M. Houston, D.P. McGaffigan, Spectrum analysis techniques for personnel detection using seismic sensors. IEEE Trans. Signal Process. 5090, 162–173 (2003)

    Google Scholar 

  16. C.J. Huang, H.Y. Yin, C.Y. Chen, C.H. Yeh, C.L. Wang, Ground vibrations produced by rock motions and debris flows. J. Geophys. Res. Earth Surf. 112 (2007)

  17. J. Huang, S. Xiao, Q. Zhou, F.G.X. You, H. Li, B. Li, A robust feature extraction algorithm for the classification of acoustic targets in wild environments. Circuits Syst. Signal Process. 34, 2395–2406 (2015)

    Article  Google Scholar 

  18. B. Jablonski, Anisotropic filtering of multidimensional rotational trajectories as a generalization of 2D diffusion process. Multidimens. Syst. Signal Process. 19, 379–399 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Kawahara, M. Sugiyama, Change-point detection in time-series data by direct density-ratio estimation. in Proceedings of 9th SIAM International Conference on Data Mining, pp. 389–400 (2009)

  20. B. Koszteczky, G. Vakulya, G. Simon, Forest intrusion detection system with sensor network. in Proceedings IEEE International Conference on Instrumentation and Measurement Technology, pp. 1672–1676 (2015)

  21. S. Li, R.M. Mnatsakanov, M.E. Andrew, k-nearest neighbor based consistent entropy estimation for hyperspherical distributions. Entropy 13(3), 650–667 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. J.M. Lilly, Modulated oscillations in three dimensions. IEEE Trans. Signal Process. 59, 5930–5943 (2011)

    Article  MathSciNet  Google Scholar 

  23. J.M. Lilly, S.C. Olhede, Bivariate instantaneous frequency and bandwidth. IEEE Trans. Signal Process. 58(2), 591–603 (2010)

    Article  MathSciNet  Google Scholar 

  24. K.V. Mardia, P.E. Jupp, Directional Statistics, Wiley Series in Probability and Statistics (Wiley, 1999)

  25. G. Mazarakis, J. Avaritsiotis, A prototype sensor node for footstep detection. in Proceedings of 2nd European Workshop Wireless Sensor Networks, pp. 415–418 (2005)

  26. A. Merrifield, An investigation of mathematical models for animal group movement, using classical and statistical approaches. Ph.D. Thesis, The University of Sydney (2006)

  27. F. Meysel, Map-based change detection (MBCD) in urban traffic scenes. in Proceedings of Joint Urban Remote Sensing Event, pp. 1–4 (2011)

  28. G. Miller, H. Pursey, On the partition of energy between elastic waves in a semi-infinite solid. in Proceedings of Royal Society London, Series A, vol. 233 (1955)

  29. S. Miron, N. Le Bihan, J. Mars, Quaternion-music for vector-sensor array processing. IEEE Trans. Signal Process. 57, 1316–1327 (2006)

    MATH  Google Scholar 

  30. R. Narayanaswami, A. Gandhe, A. Tyurina, R.K. Mehra, Sensor fusion and feature-based human/animal classification for unattended ground sensors. in Proceedings of IEEE International Conference on Technology for Homeland Security, pp. 344–350 (2010)

  31. V.D. Nguyen, M.T. Le, A.D. Do, H.H. Duong, T.D. Thai, D.H. Tran, An efficient camera-based surveillance for fall detection of elderly people. in Proceedings of IEEE 9th Conference on Industrial Electronics and Applications, pp. 994–997 (2014)

  32. T.D. Popescu, D. Aiordǎchioaie, New procedure for change detection operating on Rényi entropy with application in seismic signals processing. Circuits Syst. Signal Process. 36, 1–21 (2017)

  33. M.S.S. Reddy, K. Nathwani, R.M. Hegde, Probabilistic detection methods for acoustic surveillance using audio histograms. Circuits Syst. Signal Process. 34, 1977–1992 (2015)

    Article  MathSciNet  Google Scholar 

  34. V. Reddy, D. Venkatraman, A.W.H. Khong, B.P. Ng, Footstep detection and denoising using a single triaxial geophone. in Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, pp. 1171–1174 (2010)

  35. H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, E. Demchuk, Nearest neighbor estimates of entropy. Am. J. Math. Manag. Sci. 23, 301–321 (2003)

    MathSciNet  Google Scholar 

  36. J.C. Souyris, C. Tison, Polarimetric analysis of bistatic sar images from polar decomposition: a quaternion approach. IEEE Trans. Geosci. Remote Sens. 45(9), 2701–2713 (2007)

    Article  Google Scholar 

  37. J.C. Souyris, C. Tison, Quaternion neural-network-based polsar land classification in poincare-sphere-parameter space. IEEE Trans. Geosci. Remote Sens. 52(9), 5693–5703 (2014)

    Article  Google Scholar 

  38. J.Z. Stafsudd, S. Asgari, R. Hudson, K. Yao, E. Taciroglu, Localization of short-range acoustic and seismic wideband sources: algorithms and experiments. J. Sound Vib. 312, 74–93 (2008)

    Article  Google Scholar 

  39. G. Succi, D. Clapp, R. Gampert, G. Prado, Footstep detection and tracking. Proc. SPIE 4393, 22–29 (2001)

    Article  Google Scholar 

  40. G. Succi, G. Prado, R. Gampert, T. Pedersen, H. Dhaliwal, Problems in seismic detection and tracking. Proc. SPIE 4040, 165–173 (2000)

    Article  Google Scholar 

  41. D. Venkatraman, V. Reddy, A.W.H. Khong, On the use of the quaternion generalized Gaussian distribution for footstep detection. in Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (2013)

  42. D. Venkatraman, V. Reddy, A.W.H. Khong, B.P. Ng, Polarization-cum-energy metric for footstep detection using vector-sensor. in Proceedings of IEEE Internationl Conference on Technologies for Homeland Security (2011)

  43. H.F. Xing, F. Li, Y.L. Liu, Wavelet denoising and feature extraction of seismic signal for footstep detection. in Proceedings of IEEE International Conference on Wavelet Analysis and Pattern Recognition, vol. 1, pp. 218–223 (2007)

  44. W. Zhang, Q.J. Wu, H.B. Yin, Moving vehicles detection based on adaptive motion histogram. Digit. Signal Process. 20(3), 793–805 (2010)

    Article  Google Scholar 

  45. E. Zupan, M. Saje, D. Zupan, The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy W. H. Khong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, D., Khong, A.W.H. Directional Statistics Approach Based on Instantaneous Rotational Parameters of Tri-axial Trajectories for Footstep Detection. Circuits Syst Signal Process 37, 1958–1987 (2018). https://doi.org/10.1007/s00034-017-0647-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0647-x

Keywords

Navigation